CONDUCTIVITY OF MEDIUM LITHIUM SALT OF CALIX[N]ARENE SULFONIC ACID PLASTICIZED WITH PROPYLENE CARBONATE

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

It was discovered earlier that the calix[n]arene sulfonic acids have a record high proton conductivity, so that it was suggested that lithium salts of calix[n]arene sulfonic acids plasticized with aprotic solvents should also have ionic conductivity. It was found that the medium salt of calix[n]arene sulfonic acid in combination with propylene carbonate as a plasticizer has an ionic conductivity of 10–1–10–2 mS/cm, which makes it a promising material for further study and use as an electrolyte for lithium-ion batteries.

About the authors

A. A Knyazeva

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: talagaevanv@mail.ru
Chernogolovka, Russia

N. V Talagaeva

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: talagaevanv@mail.ru
Chernogolovka, Russia

L. V Shmygleva

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: talagaevanv@mail.ru
Chernogolovka, Russia

А. А Lochina

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: talagaevanv@mail.ru
Chernogolovka, Russia

G. V Nechaev

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: talagaevanv@mail.ru
Chernogolovka, Russia

A. N Lapshin

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: talagaevanv@mail.ru
Chernogolovka, Russia

N. A Slesarenko

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: talagaevanv@mail.ru
Chernogolovka, Russia

A. V Ivanov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: talagaevanv@mail.ru
Chernogolovka, Russia

Е. А Sanginov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: talagaevanv@mail.ru
Chernogolovka, Russia

V. M Freiman

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: talagaevanv@mail.ru
Chernogolovka, Russia

A. S Starikov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: talagaevanv@mail.ru
Chernogolovka, Russia

A. V Vinyukov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: talagaevanv@mail.ru
Chernogolovka, Russia

References

  1. Balogun, M.S., Yang, H., Luo, Y., Qiu, W., Huang, Y., Liu, Z.Q., and Tong, Y., Achieving High Gravimetric Energy Density for Flexible Lithium Ion Batteries Facilitated by Core-Double-Shell Electrodes, Energy Environ. Sci., 2018, vol. 11, p. 1859. doi: 10.1039/C8EE00522B
  2. Yoshino, A., The Birth of the Lithium-Ion Battery, Angew. Chem. Int. Ed., 2012, vol. 51, p. 5798. doi: 10.1002/anie.201105006
  3. Croce, F., Appetecchi, G.B., Persi, L., and Scrosati, B., Nanocomposite polymer electrolytes for lithium batteries, Nature, 1998, vol. 394, p. 456. doi: 10.1038/28818
  4. Zhou, L., Zhang, K., Hu, Z., Tao, Z., Mai, L., Kang, Y.M., Chou, S.L., and Chen, J., Recent Developments on and Prospects for Electrode Materials with Hierarchical Structures for Lithium-Ion Batteries, Adv. Energy Mater., 2017, vol. 8, 1701415. doi: 10.1002/aenm.201701415
  5. Chen, C., Xie, X., Anasori, B., Sarycheva, A., Makaryan, T., Zhao, M., Urbankowski, P., Miao, L., Jiang, J., and Gogotsi, Y., MoS2-on-MXene Heterostructures as Highly Reversible Anode Materials for Lithium-Ion Batteries, Angew. Chem. Int. Ed., 2018, vol. 57, p. 1846. doi: 10.1002/anie.201710616
  6. Jiang, Y., Zhang, Y., Yan, X., Tian, M., Xiao, W., and Tang, H., A sustainable route from fly ash to silicon nanorods for high performance lithium ion batteries, Chem. Eng. J., 2017, vol. 330, p. 1052. doi: 10.1016/j.cej.2017.08.061
  7. Xu, K., Electrolytes and Interphases in Li-Ion Batteries and Beyond, Chem. Rev., 2014, vol. 114, p. 11503. doi: 10.1021/cr500003w
  8. Aravindan, V., Gnanaraj, J., Madhavi, S., and Liu, H.-K., Lithium-Ion Conducting Electrolyte Salts for Lithium Batteries, Chem. Eur. J., 2011, vol. 17, p. 14326. doi: 10.1002/chem.201101486
  9. Lex-Balducci, A., Henderson, W.A., and Passerini, S., Electrolytes for lithium ion battery materials in Lithium ion batteries: advanced materials and technologies, Yuan, Y., Liu, H., and Zhang, J., Eds, Boca Raton, FL: CRC Press, 2011, p. 121.
  10. Henderson, W.A., Nonaqueous Electrolytes: Advances in Lithium Salts in Electrolytes for Lithium and Lithium-Ion Batteries, Jow, T.R., Xu, K., Borodin, O., and Ue, M., Eds, New York, NY: Springer, 2014, vol. 58, p. 476. doi: 10.1007/978-1-4939-0302-31
  11. Бушкова, О.В., Ярославцева, T.В., Добровольский, Ю.А. Новые соли лития в электролитах для литий-ионных аккумуляторов (обзор). Электрохимия. 2017. Т. 53. С. 763. doi: 10.7868/S0424857017070015 @@ Bushkova, O.V., Yaroslavtseva, T.V., and Dobrovol-sky, Yu.A., New lithium salts in electrolytes for lith-ium-ion batteries (Review), Russ. J. Electrochem., 2017, vol. 53, p. 677. doi: 10.1134/S1023193517070035
  12. Younesi, R., Veith, G.M., Johansson, P., Edstrombe, K., and Veggea, T., Lithium salts for advanced lithium batteries: Li-metal, Li-O2, and Li-S, Energy Environ. Sci., 2015, vol. 8, p. 1905. doi: 10.1039/C5EE01215E
  13. Писарева, А.В., Писарев, Р.В., Карелин, А.И., Шмыглева, Л.В., Антипин, И.С., Коновалов, А.И., Соловьева, С.Е., Добровольский, Ю.А., Алдошин, С.М. Протонная проводимость каликс[n]арен-пара-сульфокислот (n = 4, 8). Изв. АН, Сер. хим. 2012. Т. 10. С. 1877. @@Pisareva, A.V., Pisarev, R.V., Karelin, A.I., Shmy-gleva, L.V., Antipin, I.S., Konovalov, A.I., Solovie-va, S.E., Dobrovolsky, Yu.A., and Aldoshin, S.M., Proton conductivity of calix[n]arene-para-sulfon-ic acids (n = 4, 8), Russ. Chem. Bull., 2013, vol. 61, p. 1892. doi: 10.1007/s11172-012-0263-7
  14. Scharff, J.P., Mahjoubi, M., and Perrin, R., Synthesis and asid-base properties of calix[4], calix[6] and calix[8]arene p-sulfonic acids, New. J. Chem., 1991, vol. 15, p. 883.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2026 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).