ELECTROCHEMICAL LITHIATION OF NICKEL PHYLLOSILICATE NANOSCROLLS IN THE 0.01–4.5 V VOLTAGE RANGE

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Here, we study processes of Li insertion into Ni3Si2O5(OH)4 phyllosilicate nanoscrolls in the 0.01–4.5 V voltage range aiming to establish electrochemical reactions and reveal the reasons of electrode degradation. The first cathodic polarization initiates the phyllosilicate crystal structure destruction with formation of NiO, and probably SiO2 and Si, capable of reversible interaction with lithium. As cycling proceeds, the electrode capacity decreases, and the cathodic/anodic processes voltages change. The main cause of the degradation of nickel phyllosilicate-based electrodes is a decrease in the electrochemical activity of nickel oxide and its gradual transition first to cubic LixNi2–xO2 and then to hexagonal LiNiO2.

About the authors

D. A Кrasilina

Ioffe Institute, Politekhnicheskaya st. 26

Email: d.a.krasilina@mail.ioffe.ru
Saint Petersburg, Russia

P. V Larosh

Ioffe Institute, Politekhnicheskaya st. 26

Email: d.a.krasilina@mail.ioffe.ru
Saint Petersburg, Russia

E. K Khrapova

Ioffe Institute, Politekhnicheskaya st. 26

Email: d.a.krasilina@mail.ioffe.ru
Saint Petersburg, Russia

A. M Rumyantsev

Ioffe Institute, Politekhnicheskaya st. 26

Author for correspondence.
Email: d.a.krasilina@mail.ioffe.ru
Saint Petersburg, Russia

A. A Krasilin

Ioffe Institute, Politekhnicheskaya st. 26

Email: ikrasilin@mail.ioffe.ru
Saint Petersburg, Russia

References

  1. Sivaiah, M.V., Petit, S., Beaufort, M.F., Eyidi, D., Barrault, J., Batiot-Dupeyrat, C., and Valange, S., Nickel based catalysts derived from hydrothermally synthesized 1:1 and 2:1 phyllosilicates as precursors for carbon dioxide reforming of methane, Microporous Mesoporous Mater., 2011, vol. 140, p. 69.
  2. Khrapova, E.K., Ugolkov, V.L., Straumal, E.A., Lermontov, S.A., Lebedev, V.A., Kozlov, D.A., Kunkel, T.S., Nominé, A., Bruyere, S., Ghanbaja, J., Belmonte, T., and Krasilin, A.A., Thermal behavior of Mg-Ni-phyllosilicate nanoscrolls and performance of the resulting composites in hexene-1 and acetone hydrogenation, ChemNanoMat., 2021, vol. 7, no. 3, p. 257.
  3. Krasilin, A.A., Khalisov, M.M., Khrapova, E.K., Kunkel, T.S., Kozlov, D.A., Anuchin, N.M., Enyashin, A.N., and Ankudinov, A.V., Surface tension and shear strain contributions to the mechanical behavior of individual Mg-Ni-Phyllosilicate nanoscrolls, Part. Part. Syst. Char., 2021, vol. 38, p. 2100153.
  4. Krasilin, A.A., Khrapova, E.K., and Maslennikova, T.P., Cation doping approach for nanotubular hydrosilicates curvature control and related applications, Crystals., 2020, vol. 10, p. 654.
  5. Bloise, A., Barrese, E., Apollaro, C., and Miriello, D., Flux growth and characterization of Ti‐and Ni‐doped forsterite single crystals, Crystal Research and Technology: J. Experimental and Industrial Crystallography, 2011, vol. 44, no. 3, p. 463.
  6. Bloise, A., Belluso, E., Fornero, E., Rinaudo, C., Barrese, E., & Capella, S., Influence of synthesis conditions on growth of Ni-doped chrysotile, Microporous and Mesoporous Mater., 2010, vol. 132(1–2), p. 239.
  7. Deng, J., Li, X., Wei, X., Liu, Y., Liang, J., Song, B., Shao, Y., and Huang, W., Hybrid silicate-hydrochar composite for highly efficient removal of heavy metal and antibiotics: Coadsorption and mechanism, Chem. Eng. J., 2020, vol. 387, p. 124097.
  8. Chen, Y.-Y., Chang, Y.-C., Hung, W.-Y., Lin, H.-P., Shih, H.-Y., Xie, W.-A., Li, S.-N., and Hsu, C.-H., Green synthesis of porous Ni-silicate catalyst for hydrogen generation via ammonia decomposition, Int. J. Energy Res., 2020, vol. 44, p. 9748.
  9. Zhang, Y., Wang, C., Jiang, H., Wang, Q., Zheng, J., and Meng, C., Cobalt-nickel silicate hydroxide on amorphous carbon derived from bamboo leaves for hybrid supercapacitors, Chem. Eng. J., 2019, vol. 375, p. 121938.
  10. Rong, Q., Long, L.-L., Zhang, X., Huang, Y.-X., and Yu, H.-Q., Layered cobalt nickel silicate hollow spheres as a highly-stable supercapacitor material, Appl. Energy, 2015, vol. 153, p. 63.
  11. Yang, Y., Liang, Q., Li, J., Zhuang, Y., He, Y., Bai, B., and Wang, X., Ni3Si2O5(OH)4 Multi-walled nanotubes with tunable magnetic properties and their application as anode materials for lithium batteries, Nano Res., 2011, vol. 4, no. 9, p. 882.
  12. Храпова, Е.К., Ежов, И.С., Румянцев, А.М., Жданов, В.В., Красилин, А.А. Нанотубулярный гидросиликат никеля и продукты его термического отжига в качестве анодных материалов литий-ионных аккумуляторов. Неорганические материалы. 2020. Т. 56. С. 1317. [Khrapova, E.K., Ezhov, I.S., Rumyantsev, A.M., Zhdanov, V.V., and Krasilin, A.A., Nanotubular nickel hydrosilicate and Its thermal annealing products as anode materials for lithium ion batteries, Inorg. Mater., 2020, vol. 56, p. 1248.]
  13. Tang, C., Sheng, J., Xu, C., Khajehbashi, S.M.B., Wang, X., Hu, P., Wei, X., Wei, Q., Zhoua, L., and Mai, L., Facile synthesis of reduced graphene oxide wrapped nickel silicate hierarchical hollow spheres for long-life lithium-ion battery, J. Mater. Chem. A., 2015, vol. 3, p. 19427.
  14. Jin, R., Yang, Y., Li, Y., Liu, X., Xing, Y., Song, S., and Shi, Z., Sandwich-structured graphene–nickel silicate–nickel ternary composites as superior anode materials for lithium-ion batteries, Chem. Eur. J., 2015, vol. 21, p. 9014.
  15. Lu, P., Yan, X., Wang, X., Hou, F., and Liang, J., Structural design of Ni-silicate/CNT hybrid films as anode materials for highly reversible lithium and sodium storage, Sustain. Mater. Technol., 2022, vol. 31, e00375.
  16. Dai, J., Cheng, C., Li, H., Cui, T., Xiao, K., Ning, J., and Liu, J., Synthesis of nickel silicate/reduced graphene oxide composite for long-life lithium-ion storage, Mater. Res. Express., 2023, vol. 10, 035503.
  17. Cui, T., Tang, C., Li, J., Wang, B., Min, Z., Liu, J., Ning, J., Xiao, K., Zong, Z., and Zhang, Y., Porous carbon@ferric silicate hollow spheres for enhanced lithium and sodium storage, Energy Technol., 2022, vol. 10, p. 2200619.
  18. Ballirano, P., Celata, B., Pacella, A., Bloise, A., Tempesta, G., Sejkora, J., & Bosi, F., Crystal Structure and Li–Fe Order in Synthetic Mg (2–2 x) Li x Fe3+ x (SiO4) Olivine Structure. Inorganic Chem., 2024, vol. 63, no. 43, p. 20372.
  19. Levin, A., Khrapova, E., Kozlov, D., Krasilin, A, and Gusarov, V., Structure refinement, microstrains and crystallite sizes of Mg-Ni-phyllosilicate nanoscroll powders, J. Appl. Cryst., 2022, vol. 55, p. 484.
  20. Krasilin, A.A., Nevedomsky, V.N., and Gusarov, V.V., Comparative Energy Modeling of Multiwalled Mg3Si2O5(OH)4 and Ni3Si2O5(OH)4 Nanoscroll Growth, J. Phys. Chem., 2017, vol. 121, no. 22, p. 12495.
  21. Pharr, M., Zhao, K., Wang, X., Suo, Z., and Vlassak, J.J., Kinetics of initial lithiation of crystalline silicon electrodes of lithium-ion batteries, Nano Lett., 2012, vol. 12, p. 5039.
  22. Choi, W., Shin, H.-C., Kim, J.M., Choi, J.-Y., and Yoon, W.-S., Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries, J. Electrochem. Sci. Technol., 2020, vol. 11, no. 1, p. 1.
  23. Иванищев, А.В., Чуриков, А.В., Иванищева, И.А., Запсис, К.В., Гамаюнова, И.М. Импедансная спектроскопия литий-углеродных электродов. Электрохимия. 2008. Т. 44. С. 553. [Ivanishchev, A.V., Churikov, A.V., Ivanishcheva, I.A., Zapsis, K.V., and Gamayunova, I.M., Impedance spectroscopy of lithium-carbon electrodes, Russ. J. lectrochem., 2008, vol. 44, p. 533.]
  24. Кулова, Т.Л., Скундин, А.М., Плесков, Ю.В., Теруков, Е.И., Коньков, О.И. Исследование интеркаляции лития в тонкие пленки аморфного кремния. Электрохимия. 2006. Т. 42. С. 414. [Kulova, T.L., Skundin, A.M., Pleskov, Yu.V., Terukov, E.I., and Kon’kov, O.I., Lithium intercalation in thin amorphous-silicon films, Russ. J. Electrochem., 2006, vol. 42, p. 363.]
  25. Chan, C.K., Peng, H., Liu, G., McIlwrath, K., Zhang, X.F., Huggins, R.A., and Cui, Y., High-performance lithium battery anodes using silicon nanowires, Nat. Nanotechnol., 2008, vol. 3, p. 31.
  26. Ortiz, M.G., Visintin, A., and Real, S.G., Synthesis and electrochemical properties of nickel oxide as anodes for lithium-ion batteries, J. Electroanal. Chem., 2021, vol. 883, 114875.
  27. Grugeon, S., Laruelle, S., Herrera-Urbina, R., Dupont, L., Poizot, P., and Tarascon, J.-M., Particle size effects on the electrochemical performance of copper oxides toward lithium, J. Electrochem. Soc., 2001, vol. 148, no. 4, p. A285.
  28. Sun, Q., Zhang, B., and Fu, Z.-W., Lithium electrochemistry of SiO2 thin film electrode for lithium-ion batteries, Appl. Surf. Sci., 2008, vol. 254, p. 3774.
  29. Cao, L., Huang, J., Lin, Z., Yu, X., Wu, X., Zhang, B., Zhan, Y., Xie, F., Zhang, W., Chen, J., and Meng, H., Amorphous SiO2/C composite as anode material for lithium-ion batteries, J. Mater. Res., 2018, vol. 33, no. 9, p. 1219.
  30. Reddy, M.V., Subba Rao, G.V., and Chowdari, B.V.R., Metal oxides and Oxysalts as anode materials for Li ion batteries, Chem. Rev., 2013, vol. 113, p. 5364.
  31. Zhu, J., Ding, Y., Ma, Z., Tang, W., Chen, X., and Lu, Y., Recent progress on nanostructured Transition metal oxides as anode materials for lithium-ion batteries, J. Electron. Mater., 2022, vol. 51, p. 3391.
  32. Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distance in chalcogenides, Acta Cryst., vol. A32, p. 751.
  33. Nguyen, T.P., Giang, T.T., and Kim, T., Restructuring NiO to LiNiO2: Ultrastable and reversible anodes for lithium-ion batteries, Chem. Eng. J., 2022, vol. 437, p. 135292.
  34. Delmas, C. and Croguennec, L., Layered Li(Ni, M)O2 Systems as the Cathode Material in Lithium-Ion Batteries, MRS Bull., 2002, vol. 27, no. 8, p. 608.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2026 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).