INVESTIGATION OF THE MECHANISM OF CO-REDUCTION OF THE RARE-EARTH METAL IONS WITH NICKEL IONS IN AN EUTECTIC KCl–NaCl–CsCl MELT

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this work, the electrochemical behavior of dysprosium, neodymium, and lanthanum ions and their co-reduction with nickel ions on tungsten and nickel electrodes in the eutectic melt KCl–NaCl–CsCl at a temperature of 823 K have been studied. It was found that the electroreduction of Ln3+ ions proceed reversibly in one three electron stage up to the polarization rates of 0.2 V/s. At the combined content of lanthanide and nickel ions, the voltampere dependences show the reduction waves of nickel ions at potentials of –0.12… –0.3 V and of lanthanide ions at potentials of –2.13… –2.18 V relative to the chlorosilver reference electrode. Besides these waves on voltammetryograms there are three recovery waves in the region of potentials: –1.68… –1.77 V; –1.95… –2.0 V; –2.13… –2.18 V. The appearance of these waves is connected with the joint electroreduction of lanthanide and nickel ions on the metallic nickel previously separated on the tungsten electrode with a certain depolarization and formation of intermetallic phases of lanthanides and nickel of different composition LnxNiy. The chronopotentiograms of the open circuit revealed plateaus of potential delay corresponding to dissolution of separate phases of intermetallides. Electrolysis in potentiostatic condition at potentials –1.7… –2.1 V and at a certain ratio of concentrations of lanthanide and nickel chlorides the phases of intermetallic compounds LnNi5, Ln2Ni7, Ln2Ni3, LnNi3, LnNi2 were obtained. The synthesized samples of lanthanide and nickel intermetallides were characterized by X-ray phase analysis and scanning electron microscopy. The EMF values for LnxNiy intermetallic compounds in two-phase coexisting states at 823 K have been measured. The relative partial moles of the Gibbs free energy and activity of lanthanide in LnxNiy intermetallic compounds were calculated from the EDS values.

About the authors

Kh. B Kushkhova

Kabardino-Balkarian State University named after H. M. Berbekov

Email: fatya@mail.ru
Nalchik, Russia

A. A Khotov

Kabardino-Balkarian State University named after H. M. Berbekov

Email: fatya@mail.ru
Nalchik, Russia

Zh. Z Aliа

Kabardino-Balkarian State University named after H. M. Berbekov

Email: fatya@mail.ru
Nalchik, Russia

F. A Kishevaa

Kabardino-Balkarian State University named after H. M. Berbekov

Author for correspondence.
Email: fatya@mail.ru
Nalchik, Russia

References

  1. Zuttel, A., Materials for hydrogen storage, Mater. Today, 2003, vol. 6, p. 24.
  2. Rusman, N.A.A. and Dahari, M., A review on the current progress of metal hydrides material for solid-state hydrogen storage applications, Int. J. Hydrogen Energy, 2016, vol. 41, p. 12108. doi: 10.1016/j.ijhydene.2016.05.244
  3. Zhang, R.J., Wang, Y.M., Chen, D.M., Yang, R., and Yang, K., First-principles calculations of LaNi4Al-H solid solution and hydrides, Acta Mater., 2006, vol. 54, p. 465. doi: 10.1016/j.actamat.2005.09.027
  4. Итин, В.И., Найбороденко, Ю.С. Высокотемпературный электрохимический синтез интерметаллических соединений. Томск, Изд-во Томск. ун-та. 1989. C. 214 [Itin, V.I. and Naiborodenko, Yu.S., High-temperature electrochemical synthesis of intermetallic compounds. Tomsk, Tomsk University Press, 1989, p. 214.]
  5. Патент США № 3883346 от 24.07.1974, Н. Кл. 423–658.2, опубликовано 11.11.1975. [USA Patent no. 3883346, issued July 24, 1974, p. 423–658.2, published November 11, 1975.]
  6. Патент США № 3883346 от 25.04.1974, Н. Кл. 75–5, опубликовано 13.05.1975. [USA Patent no. 3,883,346, issued April 25, 1974, N. Cl. 75-5, published May 13, 1975.]
  7. Патент РФ № 2113400 от 10.04.1997, МПК с 6/24, опубликовано 20.06.1998. [Russian Federation Patent no. 2113400 dated 10.04.1997, IPC6/24, published 20.06.1998.]
  8. Патент РФ № 2351534. Способ получения обратимого водородосорбирующего сплава, Касинцев, А.В. Дата подачи 29.06.2007, опубликовано 10.04.2009. МПК с 0183/56, с 01186/24[Russian Federation Patent no. 2351534. Method for producing a reversible hydrogen-sorbing alloy, Kasintsev, A.V. Filing date 06.29.2007, published 04.10.2009. IPC c 0183/56, c 01186/24]
  9. Шаповал, В.И, Малышев, В.В., Новоселова, И.А., Кушхов, Х.Б. Современные проблемы высокотемпературного синтеза соединений переходных металлов IV–VI групп. Успехи химии. 1995. Т. 64. № 2. C. 133. [Shapoval, V.I., Malyshev, V.V., Novoselova, I.A., and Kushkhov, H.B., Modern problems of high-temperature synthesis of compounds of transition metals of groups IV–VI, Uspekhi Khimii, 1995, vol. 64, no. 2, p. 133.]
  10. Кушхов, Х.Б., Тленкопачев, М.Р. Электрохимический синтез интерметаллических и тугоплавких соединений на основе редкоземельных металлов в ионных расплавах: достижения и перспективы. Журн. общей химии. 2021. Т. 91. № 2. С. 301. [Kushkhov, H.B. and Tlenkopachev, M.R., Electrochemical synthesis of intermetallic and refractory compounds based on rare earth metals in ionic melts: achievements and prospects, J. General Chemistry, 2021, vol. 91, no. 2, p. 301.]
  11. Vandarkuzhali, S., Gogoi, N., Ghosh, S., Reddy, B.P., and Nagarajan, K., Electrochemical behaviour of LaCl3 at tungsten and aluminium cathodes in LiCl–KCl eutectic melt, Electrochim. Acta, 2012, vol. 59, p. 245. https://doi.org/10.1016/j.electacta.2011.10.062
  12. Liu, Y.L., Yuan, Y.L., Ye, G.A., Liu, K., Zhu, L., Zhang, M.L., Chai, Z.F., and Shi, Q.K., Co-reduction behaviors of lanthanum and aluminum ions in LiCI-KCI eutectic, Electrochim. Acta, 2014, vol. 147, p. 104. https://doi.org/10.1016/j.electacta.2014.08.114
  13. Konishi, H., Nohira, T., and Ito, Y., Formation and phase control of Dy alloy films by electrochemical implantation and displantation, J. Electrochem. Soc., 2001, vol. 148, no. 7, p. C506.
  14. Konishi, H. and Nohira, T., Morphology control of Dy – Ni alloy films by electrochemical displantation, Electrochem. Solid- State Lett., 2002, vol. 5, no. 12, p. 37.
  15. Konishi, H., Nohira, T., and Ito, Y., Kinetics of DyNi2 film growth by electrochemical implantation, Electrochim. Acta, 2003, vol. 48, no. 5, p. 563.
  16. Yasuda, K., Koboyashi, S., Nohira, T., and Hagiwara, R., Electrochemical formation of Dy–Ni alloys in molten KCl–NaCl–DyCl3, Electrochim. Acta, 2013, vol. 106, p. 293.
  17. Su, L.L., Liu, K., Liu, Y.L., Wang, L., Yuan, L.Y., Wang, L., Li, Z. I., Zhao, X.L., Chai, Z.F., and Shi, W.Q., Electrochemical behaviors of Dy (III) and its co-reduction with Al (III) in molten LiCl–KCl salts, Electrochim. Acta, 2014, vol. 147, p. 87.
  18. Tang, H. and Pesic, B., Electrochemistry and the mechanisms of nucleation and growth of neodymium during electroreduction from LiCl–KCl eutectic salts on Mo substrate, J. Nuclear Mater., 2015, vol. 458, p. 37.
  19. Chambers, M. F. and Murphy, J.E., Electrolytic production of neodymium metal from a molten chloride electrolyte, Spokane, 1991, Report of investigations 9391, Bureau of Mines.
  20. Konishi, H., Ono, H., Takeuchi, E., Nohira, T., and Oishi, T., Electrochemical Formation of Nd Alloys Using Liquid Metal Electrodes in Molten LiCl–KCl Systems, 2017, In: Kim, H., Alam, S., Neelameggham, N., Oosterhof, H., Ouchi, T., and Guan, X. (eds), Rare Metal Technology, The Minerals, Metals & Materials Series, Springer, Cham., 2017, p. 93–102. https://doi.org/10.1007/978-3-319-51085-910
  21. Díaz, L.F., Chamelot, P., Gibilaro, M., Massot, L., and Serp, J., Electrochemical Behavior of Neodymium in Molten Chloride Salts, In: Kim, H., Alam, S., Neelameggham, N., Oosterhof, H., Ouchi, T., and Guan, X. (eds), Rare Metal Technology, The Minerals, Metals & Materials Series, Springer, Cham. 2017, p. 77–86.
  22. Vandarkuzhali, S., Chandra, M., Ghosh, S., et al., Investigation on the electrochemical behavior of neodymium chloride at W, Al and Cd electrodes in molten LiCl-KCl eutectic, Electrochim. Acta, 2014, vol. 145, p. 86.
  23. Kushkhov, K., Ali, Zh., Khotov, A., and Kholkina, A.S., Mechanism of Dy3+ and Nd3+ ions Electrochemical Co-reduction with Ni2+, Co2+ and Fe3+ ions in Cloride melts, Materials, 2021, vol. 14, p. 7440.
  24. Кушхов, Х.Б., Кахтан, А.М.Ф., Узденова, А.С., Тленкопачев, М.Р., Узденова, Л.А. Исследование электровосстановления ионов диспрозия на различных электродах в расплаве KC1–NaCl–CsCl при Т = 823 К. Расплавы. 2014. № 4. С. 60. @@Kushkhov, H.B., Kahtan, A.M.F., Uzdenova, A.S., Tlenkopachev, M.R., and Uzdenova, L.A., Study of electroreduction of dysprosium ions on different electrodes in KCl–NaCl–CsCl melt at T = 823 K, Melts, 2014, no. 4, p. 60.
  25. Kushkhov, H.B., Uzdenova, A.S., Saleh, M.M.A., Qahtan, A.M.F., and Uzdenova, L.A., The Electroreduction of Gadolinium and Dysprosium Ions in Equimolar NaCl-KCl Melt, Amer. J. Analyt. Chem., 2013, vol. 4, p. 39.
  26. Bard, A.J. and Faulkner, L.R., Electrochemical methods, 2nd edn., New York: Wiley, 2000.
  27. Stolz, F., Electroanalytical Methods. Theory and Practice, Publishing House, Beanom, Knowledge Laboratory, 2010, p. 326.
  28. Jaeger, E. and Zalkind, F., Methods of Electrochemistry Measurements, M.: Mir, 1977, p. 585.
  29. Hua, H., Yasuda, K., Konishi, H., and Nohira T., Electrochemical Formation of Dy–Ni Alloys in Molten CaCl2–DyCl3, J. Electrochem. Soc., 2020, vol. 167, no. 14, https://doi.org/10.11395/jjsem.12.s243
  30. Nohira, T., Kobayashi, S., Kobayashi, K., Hagivara, R., Oishi, T., and Konishi, H., Electrochemical formation of Nd–Ni alloys in molten LiF–CaF2–NdF3, J. Electrochem. Soc., 2011, vol. 158, p. E142.
  31. Kobayashi, K., Nohira, T., Kobayashi, S., Yasuda, K., Hagivara, R., Oishi, T., and Konishi, H., Electrochemical formation of Dy – Ni alloys in molten LiF–CaF2–DyF3, J. Electrochem. Soc., 2012, vol. 159, p. E193.
  32. Nohira, T., Kobayashi, S., Kondo, K., Yasuda, K., Hagiwara, R., Oishi, T., and Konishi, H., Electrochemical formation of RE–Ni (RE = Pr, Nd, Dy) alloys in molten halides, ECS Meeting Abstracts, 2012, no. 53, p. 3725.
  33. Nourry, C., Massot, L., Camelot, P., and Taxil, P., Formation of Nd – Ni alloys by Nd (III) electrochemical reduction in molten fluoride, J. New Mater. for Electrochem. Systems, 2007, vol. 10, p. 117.
  34. Iida, T., Nohira, T., and Ito, Y., Electrochemical of Sm – Ni alloy films in a molten LiCl – KCl – SmCl3 system, Electrochim. Acta, 2001, vol. 46, p. 2537.
  35. Konishi, H., Nishikori, T., Nohira, T., and Ito, J., Thermodynamic properties of Dy-Ni intermetallic compounds, Electrochim. Acta, 2003, vol. 48 no. 10, p. 1403.
  36. Лякишев, Н.П. Диаграммы состояния двойных металлических систем. М.: Машиностроение, 1997. Т. 2. C. 1024. [Lyakishev, N.P., State diagrams of binary metallic systems, Moscow: Mechanical Engineering, 1997, vol. 2, p. 1024.]
  37. Binary Alloy Phaze Diagrams Secod Edition ASM International, 1996.
  38. Yasuda, K., Kobayashi, S., Nohira, T., and Hagiwara, R., Electrochemical formation of Nd–Ni alloys in molten NaCl–KCl–NdCl3, Electrochim. Acta, 2013, vol. 92, p. 349.
  39. Liu, Y.H., Yan, Y.D., Zhang, M.L., Zheng, J. N., Zhao, Y., Wang, P., Yin, T.Q., Xue, Y., Jing, Z.Y., and Han, W., Electrochemical Synthesis of Sm-Ni Alloy Magnetic Materials by Co-reduction of Sm(III) and Ni(II) in LiCl-KCl-SmCl3-NiCl2 Melt, J. Electrochem. Soc., 2016, vol. 163, no. 13, p. D672.
  40. Castrillejo, Y., Ernandez, P., Fernandez, R., and Barrado, E., Electrochemical behaiour of terbium in the eutectic LiCl – KCl in Cd liquid electrodes – Evaluation of thermochemical properties of the Tb-Cdx intermetallic compounds, Electrochim. Acta, 2014, vol. 147, p. 743.
  41. Yin, T.Q., Xue, Y., Yan, Y.D., Zheng, Y., Song, Y.L., Wang, G.L., Zhang, M.L., Qiu, M., and Hu, D.H., Electrochemical synthesis and thermodynamic properties of Pr–Ni intermetallic compounds in a LiCl–KC–NiCl2–PrCl3 Melt, ChemElectroChem., 2019, vol. 6, no. 3, p. 876.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2026 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).