EVALUATION OF ANTI-CORROSIVE EFFICIENCY OF OMEPRAZOLE BY ELECTROCHEMICAL METHODS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The release into the environment during disposal of unused and expired drugs, medical institution residues and waste, and pharmaceutical industry waste leads to its pollution and threat to public health. One of the methods for solving the problem of improper disposal of medicines is the possibility of using them as metal corrosion inhibitors. In this work, the anticorrosive protection of carbon steel in solutions of hydrochloric and sulfuric acids with the expired drug omeprazole was investigated using electrochemical methods. The studies were carried out using the methods of potentiodynamic polarization, electrochemical impedance spectroscopy and electrochemical diffusion technique. The concentration of omeprazole varied within 10–60 mg/L. According to polarization measurements, the protective effect of omeprazole at 40 mg/L reaches 84% in 1 M HCl solution and 92% in 0.5 M H2SO4 solution due to inhibition of both partial electrode reactions. According to impedance measurements, the protective effect values are 76% and 84%, respectively. The adsorption of omeprazole on steel, the surface coverage, and the subordination of adsorption to the Langmuir isotherm were estimated. The value of free energy of adsorption –ΔGoads was calculated. Using the electrochemical diffusion method, the diffusion of hydrogen released during corrosion into the metal and the inhibitory effect of omeprazole on this process were estimated.

About the authors

L. E. Tsygankova

Tambov State University named after G. R. Derzhavin

Email: vits21@mail.ru
Tambov, Russia

V. A. Kur'yato

Tambov State University named after G. R. Derzhavin

Email: bryksina_98@mail.ru
Tambov, Russia

References

  1. Sanganyado, E. and Gwenzi, W., Antibiotic resistance in drinking water systems: Occurrence, removal, and human health risks, Sci. Total Environ., 2019, vol. 669, p. 785. https://doi.org/10.1016/j.scitotenv.2019.03.162
  2. Pathak, R.K. and Mishra, P., Drugs as Corrosion Inhibitors: A Review, Intern. J. Sci. Res., 2016, vol. 5, no. 4, p. 671. www.ijsr.net
  3. Verma, C., Chauhan, D.S., and Quraishi, M.A., Drugs as environmentally benign corrosion inhibitors for ferrous and nonferrous materials in acid environment: An overview, J. Mater. Environ. Sci., 2017, vol. 8, no. 11, p. 4040. http://www.jmaterenvironsci.com/
  4. Njoku, C.N., Enendu, B.N., Okechukwu, S.J., Igboko, N., Anyikwa, S.O., Ikeuba, A.I., Onyeachu, I.B., Etim, I.N., and Njoku, D.I., Review on anti-corrosion properties of expired antihypertensive drugs as benign corrosion inhibitors for metallic materials in various environments, Results in Eng., 2023, vol. 18, 101183. https://doi.org/10.1016/j.rineng.2023.101183
  5. Al-Hamid, M.A.I., Al-Baghdadi, S.B., Gaaz, T.S., Khadom, A.A., Yousif, E., and Alamiery, A., Green chemistry solutions: Harnessing pharmaceuticals as environmentally friendly corrosion inhibitors: A review, Int. J. Corros. Scale Inhib., 2024, vol. 13, no. 2, p. 630.
  6. Abdel, R.S., Aleid, M.S., Khaled, A., Mohammad, D., Aljuhani, E.H., Al-Mhyawi, S.R., Alshammary, F., and Abdallah, M., Expired Dulcolax Drug as Corrosion Inhibitor for Low Carbon Steel in Acidic Environment, Int. J. Electrochem. Sci., 2022, vol. 17, 220655. doi: 10.20964/2022.06.69
  7. El Hamdouni, Y., Bouhlal, F., Kouri, H., Chellouli, M., Benmessaoud, M., Dahrouch, A., Labjar, N., and El Hajjaji, S., Use of Omeprazole as Inhibitor for C38 Steel Corrosion in 1.0 M H3PO4 Medium, J. Fail. Anal. and Preven., 2020, vol. 20, p. 563. https://doi.org/10.1007/s11668-020-00862-5
  8. Tsygankova, L.E., Bryksina, V.A., Alekhina, O.V., & Shel, N.V., Protective efficacy of omeprazole against hydrogen sulfide corrosion of carbon steel, Theory and Practice of Corrosion Protection, 2022, vol. 27 (4), p. 36. doi: 10.31615/j.corros.prot.2022.106.4-Х
  9. Кардаш, Н.В., Батраков, В. В. Метод определения диффузии водорода через мембрану. Защита металлов. 1995. Т. 31 (4). С. 441. [Kardash, N.V. and Batrakov, V.V., Method of determination of hydrogen diffusing through the membrane, Zaschita metallov, 1995, vol. 31 (4), p. 441 (in Russian).]
  10. Devanathan, M.A. and Stahurski, L., The adsorbtion and diffusion of electrolytic hydrogen in palladium, Proc. Roy. Soc., 1962, vol. 270A, no. 1340, p. 90.
  11. Ech-Chihbi, E., Salim, R., Oudda, H., El Hajjaji, F., Jodeh, S., and Taleb, M., Assessment of Anti-corrosion Potentials of Imidazole Derivatives on some Industrial Metals in Various Environments: A Review, Port. Electrochim. Acta, 2021, vol. 39, p. 277. https://doi.org/10.4152/pea.2021390405
  12. Дамаскин, Б.Б., Петрий, О.А., Батраков, В. В. Адсорбция органических соединений на электродах, М.: Наука, 1968. 334 c. [Damaskin, B.B., Petrii, O.A., and Batrakov, V.V., Adsorption of organic compounds on electrodes (in Russian), Moscow: Nauka, 1968. 334 p.]

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).