Zero coupon yield curve dynamics in the Russian sovereign bond market

Capa

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Yield curve is a graphical representation of a relationship between interest rates and maturity. Shape of yield curve often attracts attention of analysts, because it represents market implied expectation of future interest rate path. However, the analysis of the yield curve shape often lacks theoretical foundation. It is based either on review of term spreads or on a simple visual investigation. In this article we formally define the shape of the yield curve in terms of function invariants. We use Nelson–Siegel model as a backbone for our classification and show that there exists only six possible shapes of yield curve. They are: a normal upward slopping yield curve, inverted yield curve, humped upward slopping, dipped upward slopping, humped inverted and dipped inverted. We analyze dynamics of zero coupon yield curve in Russian market based on real historical data. We show that transition from an upward slopping curve to an inverted one was always preceded by a hump at mid-tem maturities, while the transition back was always done through the dip. This highlights the importance of mid-term rates in reshapening the curve. We explain this behavior by short end of the curve being linked to the key rate and thus being more sticky. The contribution of the paper is twofold. First, it provides a formal framework to analyze the shape of the yield curve. Second, it describes the patterns in dynamic of the ruble yield curve that can be useful for bond investors in the Russian market.

Texto integral

Acesso é fechado

Sobre autores

S. Kurochkin

HSE University

Autor responsável pela correspondência
Email: skurochkin@hse.ru
Rússia, Moscow

M. Makushkin

HSE University

Email: mmakushkin@hse.ru
Rússia, Moscow

Bibliografia

  1. Арнольд В. И. (1978). Дополнительные главы теории обыкновенных дифференциальных уравнений. М.: Наука. [Arnold V. I. (1978). Additional chapters of the theory of ordinary differential equations. Moscow: Nauka (in Russian).]
  2. Гамбаров Г. М., Шевчук И. В., Балабушкин А. Н. (2004). Оценка срочной структуры процентных ставок. Роль рынка государственных ценных бумаг в оценке срочной структуры процентных ставок // Рынок ценных бумаг. № 13. С. 1–33. [Gambarov G. M., Shevchuk I. V., Balabushkin A. N. (2004). Evaluation of interest rates term structure. The role of the sovereign bond market in valuation of interest rates term structure. Securities Market, 13, 1–33 (in Russian).]
  3. Курочкин С. В. (2021). Нейронная сеть с гладкими функциями активации и без узких горловин почти наверное является функцией Морса // Журнал вычислительной математики и математической физики. Т. 61 (7). С. 1172–1178. [Kurochkin S. V. (2021). Neural network with smooth activation functions and without bottlenecks is almost surely a Morse function. Computational Mathematics and Mathematical Physics, 61 (7), 1162–1168 (in Russian).]
  4. Лапшин В. А., Терещенко М. Ю. (2018). Выбор модели срочной структуры процентных ставок на основе ее свойств // Корпоративные финансы. Т. 12 (2). С. 53–69. [Lapshin V. A., Tereshenko M. Yu. (2018). Choosing a model of the term structure of interest rates based on its properties. Corporate Finance, 12 (2), 53–69 (in Russian).]
  5. Макушкин М. С., Лапшин В. А. (2021). Кривые доходностей на низколиквидных рынках облигаций: особенности оценки // Экономический журнал Высшей школы экономики. Т. 25 (2). С. 177–195. [Makushkin M. S., Lapshin V. A. (2021). Yield curve estimation in illiquid bond markets. HSE Economic Journal, 25 (2), 177–195 (in Russian).]
  6. Макушкин М. С., Лапшин В. А. (2023). Обработка пропусков в рыночных данных на примере задачи оценки кривой доходностей облигаций // Финансы: теория и практика. Т. 27 (6). С. 44–53. doi: 10.26794/2587-5671-2023-27-6-44-53 [Makushkin M. S., Lapshin V. A. (2023). Treatment of missing market data: Case of bond yield curve estimation. Finance: Theory and Practice, 27 (6), 44–53. doi: 10.26794/2587-5671-2023-27-6-44-53 (in Russian).]
  7. Постников М. М. (1971). Введение в теорию Морса. М.: Наука. [Postnikov M. M. (1971). Introduction to Morse theory. Moscow: Nauka (in Russian).]
  8. Ang A., Piazzesi M., Wei M. (2006). What does the yield curve tell us about GDP growth? Journal of Econometrics, 131 (1–2), 359–403.
  9. Annaert J., Claes A. G., Ceuster M. J. de, Zhang H. (2013). Estimating the spot rate curve using the Nelson–Siegel model: A ridge regression approach. International Review of Economics & Finance, 27, 482–496.
  10. Arnold V. I. (2007). Topological classification of Morse functions and generalizations of Hilbert’s 16-th problem. Mathematical Physics, Analysis and Geometry, 10, 227–236.
  11. Arnold V. I. (2006). Smooth functions statistics. Functional Analysis and Other Mathematics, 1, 111–118.
  12. Banyaga A., Hurtubise D. (2004). Lectures on Morse homology. Series: Texts in the Mathematical Sciences. Vol. 29. Dordrecht: Kluwer Acad. Publ.
  13. Barber J. R., Copper M. L. (2012). Principal component analysis of yield curve movements. Journal of Economics and Finance, 36 (3), 750–765. doi: 10.1007/s12197-010-9142-y
  14. Campbell J. Y. (1995). Some lessons from the yield curve. Journal of Economic Perspectives, 9 (3), 129–152.
  15. Chauvet M., Potter S. (2005). Forecasting recessions using the yield curve. Journal of Forecasting, 24 (2), 77–103.
  16. Chazal F., Michel B. (2021). An introduction to topological data analysis: Fundamental and practical aspects for data scientists. Frontiers in artificial intelligence, 4, 108. doi: 10.3389/frai.2021.667963
  17. Cook T., Hahn T. (1990). Interest rate expectations and the slope of the money market yield curve. FRB Richmond Economic Review, 76 (5), 3–26.
  18. Culbertson J. M. (1957). The term structure of interest rates. The Quarterly Journal of Economics, 71 (4), 485–517.
  19. Diebold F. X., Li C. (2006). Forecasting the term structure of government bond yields. Journal of Econometrics, 130, 337–364. doi: 10.1016/j.jeconom.2005.03.005
  20. Diez F., Korn R. (2020). Yield curve shapes of Vasicek interest rate models, measure transformations and an application for the simulation of pension products. European Actuarial Journal, 10, 91–120. doi: 10.1007/s13385-019-00214-0
  21. Estrella A., Mishkin F. S. (1998). Predicting US recessions: Financial variables as leading indicators. Review of Economics and Statistics, 80 (1), 45–61.
  22. Fama E. F., Bliss R. R. (1987). The information in long-maturity forward rates. The American Economic Review, 77 (4), 680–692.
  23. Fisher I. (1896). Appreciation and interest. Publications of the American Economic Association, 23–29, 88–92.
  24. Fisher M. (2001). Forces that shape the yield curve. Parts 1 and 2. Federal Reserve Bank of Atlanta Working Paper, no. 2001–3.
  25. Hicks J. R. (1946). Value and capital. 2nd ed. Oxford: Oxford University Press.
  26. Hua J. (2015). Term structure modeling and forecasting using the Nelson-Siegel model. Handbook of Financial Econometrics and Statistics. Springer USA, 1093–1103.
  27. Ilmanen A. (1995). Convexity bias and the yield curve. N.Y.: Salomon Bros.
  28. Ilmanen A., Iwanowski R. (1997). Dynamics of the shape of the yield curve. The Journal of Fixed Income, 7 (2), 47.
  29. Ishii H. (2023). Yield curve shapes and foreign exchange rates: The term structure of interest rates model approach. Applied Economics, 55 (38), 4402–4414.
  30. Keynes J. M. (1936). The general theory of employment, interest and money. London: Macmillan & Co. Ltd.
  31. Le C. (2018). A note on optimization with Morse polynomials. Commun. Korean Math. Soc., 33, 2, 671–676.
  32. Lutz F. A. (1940). The structure of interest rates. Quarterly Journal of Economics, 55, 36–63.
  33. McCulloch J.H. (1971). Measuring the term structure of interest rates. The Journal of Business, 44 (1), 19–31.
  34. Mehl A. (2009). The yield curve as a predictor and emerging economies. Open Economies Review, 20, 683–716.
  35. Meilă M., Zhang H. (2024). Manifold learning: What, how, and why. Annual Review of Statistics and Its Application, 11. doi: 10.48550/arXiv.2311.0375
  36. Modigliani F. R., Sutch R. (1966). Innovations in interest rate policy. American Economic Review, 56, 178–197.
  37. Nelson C. R., Siegel A. F. (1987). Parsimonious modeling of yield curves. Journal of Business, 473–489.
  38. Nicolaescu L. I. (2008). Counting Morse functions on the 2-sphere. Compositio Mathematica, 144, 5, 1081–1106.
  39. Rebonato R., Putyatin V. (2018). The value of convexity: A theoretical and empirical investigation. Quantitative Finance, 18 (1), 11–30. doi: 10.1080/14697688.2017.1341639
  40. Shiller R. J., McCulloch H.J. (1990). The term structure of interest rates. In: Handbook of Monetary Economics. Chapter 13. B. M. Friedman, F. H. Hahn (eds.), 627–722. Elsevier (North Holland Publisher).
  41. Svensson L. E. O. (1994). Estimating and interpreting forward interest rates: Sweden 1992–1994. National Bureau of Economic Research. Working Paper no. 4871.
  42. Vasicek O. (1977). An equilibrium characterization of the term structure. Journal of Financial Economics, 5 (2), 177–188.
  43. Wahlstrøm R. R., Paraschiv F., Schürle M. (2022). A comparative analysis of parsimonious yield curve models with focus on the Nelson-Siegel, Svensson and Bliss versions. Computational Economics, 1–38.

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».