Sushchestvovanie i edinstvennost' klassicheskogo resheniya pervoy kraevoy zadachi dlya parabolicheskikh sistem na ploskosti

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider the first boundary value problem for uniformly parabolic systems of the second order with one spatial variable in bounded and semibounded domains with nonsmooth lateral boundaries. The coefficients of the system satisfy the Hölder condition and do not depend on the time variable. For continuous initial and boundary functions, the existence and uniqueness of the classical solution of this problem is established

作者简介

A. Konenkov

Yesenin Ryazan State University

编辑信件的主要联系方式.
Email: an.konenkov@gmail.com
Ryazan, 390000, Russia

参考

  1. Солонников В.А. О краевых задачах для линейных параболических систем дифференциальных уравнений общего вида // Тр. Мат. ин-та имени В.А. Стеклова. 1965. Т. 83. С. 3-163.
  2. Бадерко Е.А., Черепова М.Ф. Потенциал простого слоя и первая краевая задача для параболической системы на плоскости // Дифференц. уравнения. 2016. T. 52. № 2. C. 198-208.
  3. Бадерко Е.А., Черепова М.Ф. Задача Дирихле для параболических систем с Дини-непрерывными коэффициентами на плоскости // Докл. РАН. 2017. Т. 476. № 1. С. 7-10.
  4. Baderko E.A., Cherepova M.F. Dirichlet problem for parabolic systems with Dini continuous coefficients // Appl. Anal. 2021. V. 100. № 13. P. 2900-2910.
  5. Мазья В.Г., Кресин Г.И. О принципе максимума для сильно эллиптических и параболических систем второго порядка с постоянными коэффициентами // Мат. сб. 1984. Т. 125 (167). № 4. С. 458-480.
  6. Бадерко Е.А., Черепова М.Ф. Единственность решений начально-краевых задач для параболических систем в плоских ограниченных областях с негладкими боковыми границами // Докл. РАН. Математика, информатика, процессы управления. 2020. Т. 494. № 5. С. 5-8.
  7. Бадерко Е.А., Черепова М.Ф. О единственности решений первой и второй начально-краевых задач для параболических систем в ограниченных областях на плоскости // Дифференц. уравнения. 2021. T. 57. № 8. C. 1039-1048.
  8. Бадерко Е.А., Сахаров С.И. Единственность решения первой начально-краевой задачи для параболической системы с дифференцируемыми коэффициентами в полуполосе с негладкой боковой границей // Дифференц. уравнения. 2021. Т. 57. № 5. С. 625-634.
  9. Бадерко Е.А., Сахаров С.И. О единственности решений начально-краевых задач для параболических систем с Дини-непрерывными коэффициентами в полуограниченной области на плоскости // Журн. вычислит. математики и мат. физики. 2023. Т. 63. № 4. С. 54-65.
  10. Фридман А. Уравнения с частными производными параболического типа. М., 1968.
  11. Коненков А.Н. Классические решения первой краевой задачи для параболических систем на плоскости // Докл. РАН. 2022. Т. 503. С. 67-69.
  12. Эйдельман С.Д. Параболические системы. М., 1964.
  13. Тверитинов В.А. Гладкость потенциала простого слоя для параболической системы второго порядка // Деп. в ВИНИТИ АН СССР 02.09.88. № 6850-В88.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».