Обобщение задачи с наклонной производной для уравнения Гельмгольца в круге

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Исследована краевая задача для уравнения Гельмгольца в круге с краевым условием, содержащим наклонную производную с гёльдеровыми коэффициентами. Доказана однозначная разрешимость задачи при определенных ограничениях на параметр уравнения.

Об авторах

А. А Полосин

Московский государственный университет имени М.В. Ломоносова

Email: alexei-polosin@mail.ru
Москва, Россия

Список литературы

  1. Полосин, А.А. О задаче с наклонной производной для уравнения Гельмгольца в круге / А.А. Полосин // Дифференц. уравнения. — 2018. — Т. 54, №4. — С. 492–501.
  2. Полосин, А.А. О смешанной задаче с наклонной производной для уравнения Гельмгольца в полукруге / А.А. Полосин // Дифференц. уравнения. — 2018. — Т. 54, №10. — С. 1399–1410.
  3. Полосин, А.А. О задаче типа Геллерстедта с наклонной производной для уравнения смешанного типа со спектральным параметром / А.А. Полосин // Дифференц. уравнения. — 2019. — Т. 55, №10. — С. 1416–1425.
  4. Problem with oblique derivative and mixed boundary conditions on the diameter for the Helmholtz equation in a semidisk / N. Kapustin, E. Moiseev, A. Polosin, N. Popivanov // Proc. of the 44th Intern. Conf. on Applications of Mathematics in Engineering and Economics / Eds. V. Pasheva, N. Popivanov, G. Venkov. — American Institute of Physics, 2018. — Art. 040021.
  5. Ильин, В.А. Об отсутствии свойства базисности у системы корневых функций задачи с наклонной производной / В.А. Ильин, Е.И. Моисеев // Дифференц. уравнения. — 1994. — Т. 30, №1. — С. 128–143.
  6. Полосин, А.А. О расположении спектра и отсутствии свойства базисности у системы корневых функций задачи с наклонной производной с переменным углом наклона / А.А. Полосин // Дифференц. уравнения. — 2011. — Т. 47, №10. — С. 1466–1473.
  7. Моисеев, Е.И. О расположении спектра краевой задачи со смешанными краевыми условиями / Е.И. Моисеев // Дифференц. уравнения. — 1988. — Т. 24, №1. — С. 123–135.
  8. Моисеев, Е.И. О расположении спектра задачи Трикоми для уравнения Лаврентьева–Бицадзе / Е.И. Моисеев // Дифференц. уравнения. — 1989. — Т. 25, №1. — С. 97–106.
  9. Ватсон, Г.Н. Теория бесселевых функций. Ч. 1 / Г.Н. Ватсон ; пер. со 2-го англ. изд. В.С. Берманова. — М.: Изд-во иностр. лит-ры, 1949. — 797 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).