КЛАССИЧЕСКОЕ РЕШЕНИЕ ПЕРВОЙ СМЕШАННОЙ ЗАДАЧИ ДЛЯ ВОЛНОВОГО УРАВНЕНИЯ В ЦИЛИНДРИЧЕСКОЙ ОБЛАСТИ В ПРОСТРАНСТВЕ НЕЧЁТНОЙ РАЗМЕРНОСТИ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Рассмотрена первая смешанная задача для волнового уравнения в цилиндрической области в пространстве с нечётным количеством измерений. С помощью метода характеристик найдены явная формула классического решения данной задачи, а также условия согласования на исходные функции, гарантирующие достаточную гладкость решения во всей области.

Об авторах

В. И Корзюк

Белорусский государственный университет; Институт математики Национальной академии наук Беларуси

Email: korzyuk@bsu.by
Минск

И. И Столярчук

ООО “Нэкстсофт”

Email: stolyarchuk.ivan.i@gmail.com
Минск

Список литературы

  1. Корзюк, В.И. Классическое решение первой смешанной задачи для уравнения Клейна–Гордона– Фока в полуполосе / В.И. Корзюк, И.И. Столярчук // Дифференц. уравнения. — 2014. — Т. 50, № 8. — С. 1108–1117.
  2. Корзюк, В.И. Классическое решение первой смешанной задачи для гиперболического уравнения второго порядка в криволинейной полуполосе с переменными коэффициентами / В.И. Корзюк, И.И. Столярчук // Дифференц. уравнения. — 2017. — Т. 53, № 1. — С. 77–88.
  3. Чернятин, В.А. О разрешимости смешанной задачи для неоднородного гиперболического уравнения / В.А. Чернятин // Дифференц. уравнения. — 1988. — Т. 24, № 4. — C. 717–720.
  4. Барановская, С.Н. Смешанная задача для уравнения колебания струны с зависящей от времени косой производной в краевом условии / С.Н. Барановская, Н.И. Юрчук // Дифференц. уравнения. — 2009. — Т. 45, № 8. — С. 1188–1191.
  5. Шлапакова, Т.С. Смешанная задача для уравнения колебания ограниченной струны с производной в краевом условии, направленной не по характеристике / Т.С. Шлапакова, Н.И. Юрчук // Вестн. БГУ. Сер. 1. Физика. Математика. Информатика. — 2013. — № 1. — С. 64–69.
  6. Эванс, Л.К. Уравнения с частными производными / Л.К. Эванс. — Новосибирск : Тамара Рожковская, 2003. — 562 c.
  7. Ильин, В.А. О разрешимости смешанных задач для гиперболического и параболического уравнений / В.А. Ильин // Успехи мат. наук. — 1960. — Т. 15, № 2. — С. 97–154.
  8. Корзюк, В.И. Уравнения математической физики / В.И. Корзюк. — 2-е изд., испр. и доп. — М. : Ленанд, 2021. — 478 с.
  9. Корзюк, В.И. Классическое решение первой смешанной задачи для волнового уравнения в цилиндрической области / В.И. Корзюк, И.И. Столярчук // Дифференц. уравнения. — 2022. — Т. 58, № 10. — С. 1353–1359.
  10. Корзюк, В.И. Произвольной гладкости классическое решение первой смешанной задачи для уравнения типа Клейна–Гордона–Фока / В.И. Корзюк, И.И. Столярчук // Весцi НАН Беларусi. Сер. фiз.-мат. навук. — 2022. — Т. 58, № 1. — С. 34–47.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).