TYPICAL DROPPING ASYMPTOTICS OF QUASICLASSICAL APPROXIMATIONS TO SOLUTIONS OF THE NONLINEAR SCHRÖDINGER EQUATION

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Formal asymptotics are substantiated that describe typical dropping cusp singularity of quasiclassical approximations to solutions of two cases of the integrable nonlinear Schr¨odinger equation −𝑖𝜀Ψ′𝑡=𝜀2Ψ′′𝑥𝑥±2|Ψ|2Ψ, where 𝜀 is a small parameter. The substantiation uses the ideology and facts of the mathematical catastrophe theory and the part of the theorem of Yu.F. Korobeinik, concerning analytical as ℎ → 0 solutions 𝐺(ℎ, 𝑢) of the mixed type linear equation ℎ𝐺′′ℎℎ = 𝐺′′𝑢𝑢 to which the hodograph images of both cases of the systems of equations of these quasiclassical approximations are equivalent.

Sobre autores

S. Melikhov

Southern Federal University; Southern Mathematical Institute of VSC of RAS

Email: snmelihov@yandex.ru
Rostov-on-Don, Russia; Vladikavkaz, Russia

B. Suleimanov

Institute of Mathematics with Computing Centre — Subdivision of the Ufa Federal Research Centre of RAS

Email: bisul@mail.ru
Russia

A. Shavlukov

Institute of Mathematics with Computing Centre — Subdivision of the Ufa Federal Research Centre of RAS

Email: aza3727@yandex.ru
Russia

Bibliografia

  1. Ильин, А.М. Согласование асимптотических разложений решений краевых задач / А.М. Ильин. — М. : Наука, 1989. — 336 c.
  2. Гуревич, А.В. Нелинейная теория распространения радиоволн в ионосфере / А.В. Гуревич, А.Б. Шварцбург. — М. : Наука, 1973. — 272 c.
  3. Шварцбург, А.Б. Геометрическая оптика в нелинейной теории волн / А.Б. Шварцбург. — М. : Наука, 1976. — 119 c.
  4. Жданов, С.Л. Квазигазовые неустойчивые среды / С.Л. Жданов, А.Б. Трубников. — М. : Наука, 1991. — 174 c.
  5. Кудашев, В.Р. Особенности некоторых типичных процессов самопроизвольного падения интенсивности в неустойчивых средах / В.Р. Кудашев, Б.И. Сулейманов // Письма в журн. эксп. и теор. физики. — 1995. — Т. 65, № 4. — С. 358–363.
  6. Кудашев, В.Р. Влияние малой диссипации на процессы зарождения одномерных ударных волн / В.Р. Кудашев, Б.И. Сулейманов // Прикл. математика и механика. — 2001. — Т. 3, № 3. — С. 456–466.
  7. Гарифуллин, Р.Н. От слабых разрывов к бездиссипативным ударным волнам / Р.Н. Гарифуллин, Б.И. Сулейманов // Журн. эксп. и теор. физики. — 2010. — Т. 137, № 1. — С. 149–164.
  8. Dubrovin, B. On universality of critical behaviour in the critical behaviour in the focusing nonlinear Schr¨odinger equation, elliptic umbilic catstrophe and the tritonque to the Painlev´e-I equation / B. Dubrovin, T. Grava, С. Klein // J. Nonlinear Sci. — 2009. — V. 19, № 1. — P. 57–94.
  9. Konopelchenko, B.G. Quasi-classical approximation in vortex filament dynamics. Integrable systems, gradient catastrophe, and flutter / B.G. Konopelchenko, G. Ortenzi // Stud. Appl. Math. — 2013. — V. 130, № 2. — P. 167–199.
  10. Konopelchenko, B.G. Jordan form, parabolicity and other features of change of type transition for hydrodynamic type systems / B.G. Konopelchenko, G. Ortenzi // J. Phys. A. — 2017. — V. 50, № 21. — Art. 215205.
  11. Богаевский, И.А. Особенности многозначных решений квазилинейных гиперболических систем / И.А. Богаевский, Д.В. Туницкий // Тр. Мат. ин-та им. В.А. Стеклова. — 2020. — Т. 308. — С. 76–87.
  12. Сулейманов, Б.И. Типичная провальная особенность сборки решений уравнений движения одномерного изоэнтропического газа / Б.И. Сулейманов, А.М. Шавлуков // Изв. РАН. Сер. физ. — 2020. — Т. 84, № 5. — С. 664–666.
  13. Сулейманов, Б.И. О наследовании решениями уравнений движения изоэнтропического газа типичных особенностей решений линейного волнового уравнения / Б.И. Сулейманов, А.М. Шавлуков // Мат. заметки. — 2022. — Т. 112, № 4. — С. 625–640.
  14. Рахимов, А.Х. Особенности римановых инвариантов / А.Х. Рахимов // Функц. анализ и его приложения. — 1993. — Т. 27, № 1. — С. 46–59.
  15. Брёкер, Т. Дифференцируемые ростки и катастрофы / Т. Брёкер, Л. Ландер ; пер. с англ. А.Г. Кушниренко. — М. : Мир, 1977. — 208 c.
  16. Постон, Т. Теория катастроф и ее приложения / Т. Постон, И. Стюарт ; пер. с англ. А.В. Чернавского. — М. : Мир, 1980. — 617 c.
  17. Арнольд, В.И. Особенности дифференцируемых отображений. Т. 1. Классификация критических точек, каустик и волновых фронтов / В.И. Арнольд, А.Н. Варченко, С.М. Гусейн-Заде. — М. : Наука, 1982. — 304 c.
  18. Гилмор, Р. Прикладная теория катастроф. Кн. 1 / Р. Гилмор ; пер. с англ. под ред. Ю.П. Гупало, А.А. Пионтковского. — М. : Мир, 1984. — 349 c.
  19. Алексеев, Ю.К. Введение в теорию катастроф / Ю.К. Алексеев, В.П. Сухоруков; — М. : Изд-во Моск. ун-та, 2000. — 182 c.
  20. Седых, В.Д. Математические методы теории катастроф / В.Д. Седых. — М. : МЦНМО, 2021. — 224 c.
  21. Коробейник, Ю.Ф. Об аналитических решениях одного класса уравнений в частных производных / Ю.Ф. Коробейник// Докл. АН СССР. — 1961. — Т. 140, № 6. — С. 1248–1251.
  22. Янушаускас, А.И. Структурные свойства решений некоторых аналитических уравнений с частными производными / А.И. Янушаускас // Дифференц. уравнения. — 1981. — Т. 17, № 1. — С. 182–194.
  23. Янушаускас, А.И. Аналитические и гармонические функции многих переменных / А.И. Янушаускас. — Новосибирск : Наука, 1981. — 183 c.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».