Istochnik mezhdiapazonnykh fotonnykh par na osnove fotonno-kristallicheskogo volokna s nepreryvnoy nakachkoy

Abstract

Экспериментально демонстрируется генерация междиапазонных фотонных пар с длинами волн вблизи 0.5 и 1.6 мкм в фотонно-кристаллическом волокне при использовании непрерывной маломощной оптической накачки диодным лазером с центральной длиной волны 0.8 мкм. Установлено, что скорость генерации перепутанных фотонов при непрерывной накачке сопоставима со значениями, получаемыми при использовании импульсной накачки титан-сапфировым фемтосекундным лазером, если средняя мощность непрерывной накачки на порядок превышает среднюю мощность импульсной. Достигнутые скорости генерации фотонов обеспечиваются использованием фотонно-кристаллического волокна с малой эффективной площадью моды и специальным профилем дисперсии, при этом достигнутая низкая зашумленность выходного сигнала обеспечивается разделением несущих частот генерируемых фотонов на разные спектральные диапазоны.

References

  1. Д.Н. Клышко, Успехи физических наук 158(6), 327 (1989).
  2. P.-A. Moreau, E. Toninelli, T. Gregory, and M. J. Padgett, Nat. Rev. Phys. 1(6), 367 (2019).
  3. S. Magnitskiy, D. Agapov, and A. Chirkin, Opt. Lett. 47(4), 754 (2022).
  4. A. Vall´es, G. Jim´enez, L. J. Salazar-Serrano, and J.P. Torres, Phys. Rev. A 97(2), 023824 (2018).
  5. F. Schlawin, K.E. Dorfman, and S. Mukamel, Acc. Chem. Res. 51(9), 2207 (2018).
  6. Z. He, Y. Zhang, X. Tong, L. Li, and L.V. Wang, Nat. Commun. 14(1), 2441 (2023).
  7. M. Minnegaliev, K. Gerasimov, and S. Moiseev, JETP Lett. 117(11), 865 (2023).
  8. C. Jones, D. Kim, M.T. Rakher, P.G. Kwiat, and T.D. Ladd, New J. Phys. 18(8), 083015 (2016).
  9. D.A. Kalashnikov, A.V. Paterova, S.P. Kulik, and L.A. Krivitsky, Nat. Photonics 10(2), 98 (2016).
  10. X. Lu, Q. Li, D.A. Westly, G. Moille, A. Singh, V. Anant, and K. Srinivasan, Nat. Phys. 15(4, 373 (2019).
  11. A. Leontyev and G.K. Kitaeva, JETP Lett. 112, 269 (2020).
  12. P.A. Prudkovskii, JETP Lett. 114, 173 (2021).
  13. K. Katamadze, A. Pashchenko, A. Romanova, and S. Kulik, JETP Lett. 115(10), 581 (2022).
  14. K. Katamadze, N. Borshchevskaya, I. Dyakonov, A. Paterova, and S. Kulik, Phys. Rev. A 92(2), 023812 (2015).
  15. O. Ermishev, M. Smirnov, A. Khairullin, and N. Arslanov, Bull. Russ. Acad. Sci.: Phys. 86(12), 1502 (2022).
  16. M.V. Chekhova, S. Germanskiy, D.B. Horoshko, G.K. Kitaeva, M. I. Kolobov, G. Leuchs, C.R. Phillips, and P.A. Prudkovskii, Opt. Lett. 43(3), 375 (2018).
  17. L. Wang, C. Hong, and S. Friberg, Journal of Optics B: Quantum and Semiclassical Optics 3(5), 346 (2001).
  18. J. Rarity, J. Fulconis, J. Duligall, W. Wadsworth, and P. S. J. Russell, Opt. Expr. 13(2), 534 (2005).
  19. C. S¨oller, B. Brecht, P. J. Mosley, L.Y. Zang, A. Podlipensky, N.Y. Joly, P. S. J. Russell, and C. Silberhorn, Phys. Rev. A 81(3), 031801 (2010).
  20. K. Petrovnin, M. Smirnov, I. Fedotov, A. Voronin, I. Latypov, A. Shmelev, A. Talipov, T. Matveeva, A. Fedotov, S. Moiseev, and A.M. Zheltikov, Laser Phys. Lett. 16(7), 075401 (2019).
  21. N. Petrov, A. Voronin, A. Fedotov, and A. Zheltikov, Phys. Rev. A 100(3), 033837 (2019).
  22. G. P. Agrawal, J. Opt. Soc. Am. B 28, A1 (2011).
  23. G.P. Agrawal, Fiber-optic communication systems, John Wiley & Sons, Hoboken, New Jersey, U.S. (2012).
  24. J.-H. Kim, Y. S. Ihn, Y.-H. Kim, and H. Shin, Opt. Lett. 44, 447 (2019).
  25. A.A. Shukhin, J. Keloth, K. Hakuta, and A.A. Kalachev, Phys. Rev. A 101, 053822 (2020).
  26. А.М. Желтиков, Успехи физических наук 177(7), 737 (2007).
  27. K. Garay-Palmett, D.B. Kim, Y. Zhang, F.A. Dom´ınguez-Serna, V.O. Lorenz, and A.B. U’Ren, J. Opt. Soc. Am. B 40, 469 (2023).
  28. J. Hammer, M.V. Chekhova, D.R. H¨aupl, R. Pennetta, and N.Y. Joly, Phys. Rev. Res. 2, 012079 (2020).
  29. J. Fulconis, O. Alibart, W. Wadsworth, P. S. J. Russell, and J. Rarity, Opt. Express 13(19), 7572 (2005).
  30. A. Migdall, S.V. Polyakov, J. Fan, and J.C. Bienfang, Single-photon generation and detection: physics and applications, Academic Press, Elsevier, Amsterdam (2013).
  31. NKT Photonics, Nonlinear Fibers Datasheet, https://www.nktphotonics.com/products/opticalfibers-and-modules/nonlinear-photonic-crystal-fibers/
  32. M. Cordier, P. Delaye, F. G´erˆome, F. Benabid, and I. Zaquine, Sci. Rep. 10(1), 1650 (2020).
  33. O.A. Ivanova, T. S. Iskhakov, A.N. Penin, and M.V. Chekhova, Quantum Electronics 36(10), 951 (2006).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Российская академия наук

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).