On locally nilpotent derivations of polynomial algebra in three variables
- 作者: Dasgupta N.1, Gaifullin S.A.2,3,4
-
隶属关系:
- MURTI Research Center, Gandhi Institute of Technology and Management, Bengaluru, Karnataka, India
- Faculty of Computer Science, National Research University Higher School of Economics, Moscow, Russia
- Moscow Center of Fundamental and Applied Mathematics, Moscow, Russia
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
- 期: 卷 216, 编号 4 (2025)
- 页面: 3-34
- 栏目: Articles
- URL: https://ogarev-online.ru/0368-8666/article/view/306694
- DOI: https://doi.org/10.4213/sm10094
- ID: 306694
如何引用文章
详细
In this paper we investigate locally nilpotent derivations on the polynomial algebra in three variables over a field of characteristic zero. We introduce an iterating construction giving all locally nilpotent derivations of rank $2$. This construction allows us to obtain examples of non-triangularizable locally nilpotent derivations of rank $2$. We also show that the well-known example of a locally nilpotent derivation of rank $3$, given by Freudenburg, is a member of a large family of new examples of rank $3$ locally nilpotent derivations. Our approach is based on considering all locally nilpotent derivations commuting with a given derivation. We obtain a characterization of locally nilpotent derivations with a given rank in terms of sets of commuting locally nilpotent derivations. Bibliography: 32 titles.
作者简介
Nikhilesh Dasgupta
MURTI Research Center, Gandhi Institute of Technology and Management, Bengaluru, Karnataka, India
编辑信件的主要联系方式.
Email: its.nikhilesh@gmail.com
Sergey Gaifullin
Faculty of Computer Science, National Research University Higher School of Economics, Moscow, Russia; Moscow Center of Fundamental and Applied Mathematics, Moscow, Russia; Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
Email: sgayf@yandex.ru
Candidate of physico-mathematical sciences
参考
- И. В. Аржанцев, М. Г. Зайденберг, К. Г. Куюмжиян, “Многообразия флагов, торические многообразия и надстройки: три примера бесконечной транзитивности”, Матем. сб., 203:7 (2012), 3–30
- А. Ю. Перепечко, “Гибкость аффинных конусов над поверхностями дель Пеццо степени 4 и 5”, Функц. анализ и его прил., 47:4 (2013), 45–52
- I. Arzhantsev, H. Flenner, S. Kaliman, F. Kutzschebauch, M. Zaidenberg, “Flexible varieties and automorphism groups”, Duke Math. J., 162:4 (2013), 767–823
- M. A. Barkatou, H. El Houari, M. El Kahoui, “Triangulable locally nilpotent derivations in dimension three”, J. Pure Appl. Algebra, 212:9 (2008), 2129–2139
- H. Bass, “A non-triangular action of $mathbb G_a$ on $mathbb A^3$”, J. Pure Appl. Algebra, 33:1 (1984), 1–5
- S. M. Bhatwadekar, D. Daigle, “On finite generation of kernels of locally nilpotent $R$-derivations of $R[X,Y,Z]$”, J. Algebra, 322:9 (2009), 2915–2926
- S. M. Bhatwadekar, N. Gupta, S. A. Lokhande, “Some $K$-theoretic properties of the kernel of a locally nilpotent derivation on $k[X_1, …,X_4]$”, Trans. Amer. Math. Soc., 369:1 (2017), 341–363
- P. Bonnet, “Surjectivity of quotient maps for algebraic $(mathbb{C}, +)$-actions and polynomial maps with contractible fibers”, Tranform. Groups, 7:1 (2002), 3–14
- D. Daigle, “A necessary and sufficient condition for triangulability of derivations of $k[X,Y,Z]$”, J. Pure Appl. Algebra, 113:3 (1996), 297–305
- D. Daigle, “Classification of homogeneous locally nilpotent derivations of $k[X,Y,Z]$. I. Positive gradings of positive type”, Transform. Groups, 12:1 (2007), 33–47
- D. Daigle, “Triangular derivations of $mathbf{k}[X,Y,Z]$”, J. Pure Appl. Algebra, 214:7 (2010), 1173–1180
- D. Daigle, G. Freudenburg, “Locally nilpotent derivatons over a UFD and an application to rank two locally nilpotent derivations of $k[X_1,…,X_n]$”, J. Algebra, 204:2 (1998), 353–371
- D. Daigle, S. Kaliman, “A note on locally nilpotent derivations and variables of $k[X,Y,Z]$”, Canad. Math. Bull., 52:4 (2009), 535–543
- N. Dasgupta, N. Gupta, “An algebraic characterization of the affine three space”, J. Commut. Algebra, 13:3 (2021), 333–345
- S. A. Gaifullin, “Automorphisms of Danielewski varieties”, J. Algebra, 573 (2021), 364–392
- S. Gaifullin, A. Shafarevich, “Flexibility of normal affine horospherical varieties”, Proc. Amer. Math. Soc., 147:8 (2019), 3317–3330
- G. Freudenburg, “Triangulability criteria for additive group actions on affine space”, J. Pure Appl. Algebra, 105:3 (1995), 267–275
- G. Freudenburg, “Local slice constructions in $k[X,Y,Z]$”, Osaka J. Math, 34:4 (1997), 757–767
- G. Freudenburg, “Actions of $G_a$ on $mathbf A^3$ defined by homogeneous derivations”, J. Pure Appl. Algebra, 126:1-3 (1998), 169–181
- G. Freudenburg, Algebraic theory of locally nilpotent derivations, Encyclopaedia Math. Sci., 136, Invariant Theory Algebr. Transform. Groups, VII, 2nd ed., Springer-Verlag, Berlin, 2017, xxii+319 pp.
- H. W. E. Jung, “Über ganze birationale Transformationen der Ebene”, J. Reine Angew. Math., 1942:184 (1942), 161–174
- S. Kaliman, L. Makar-Limanov, “On the Russell–Koras contractible threefolds”, J. Algebraic Geom., 6:2 (1997), 247–268
- L. Makar-Limanov, “On the hypersurface $x + x^2y + z^2 + t^3 = 0$ in $mathbb{C}^4$ or a $mathbb{C}^3$-like threefold which is not $mathbb{C}^3$”, Israel J. Math., 96 (1996), 419–429
- L. Makar-Limanov, “On the group of automorphisms of a surface $x^ny = P(z)$”, Israel J. Math., 121 (2001), 113–123
- S. Maubach, “The commuting derivations conjecture”, J. Pure Appl. Algebra, 179:1-2 (2003), 159–168
- L. Moser-Jauslin, “Automorphism groups of Koras–Russell threefolds of the first kind”, Affine algebraic geometry, CRM Proc. Lecture Notes, 54, Amer. Math. Soc., Providence, RI, 2011, 261–270
- M. Nagata, On automorphism group of $k[x,y]$, Lect. Math. Dep. Math. Kyoto Univ., 5, Kinokuniya Book Store Co., Ltd., Tokyo, 1972, v+53 pp.
- C. Petitjean, “Automorphism groups of Koras–Russell threefolds of the second kind”, Beitr. Algebra Geom., 57:3 (2016), 599–605
- V. L. Popov, “On actions of $mathbb{G}_a$ on $mathbb{A}^n$”, Algebraic groups (Utrecht, 1986), Lecture Notes in Math., 1271, Springer-Verlag, Berlin, 1987, 237–242
- R. Rentschler, “Operations du groupe additif sur le plan affine”, C. R. Acad. Sci. Paris Ser. A-B, 267 (1968), A384–A387
- W. van der Kulk, “On polynomial rings in two variables”, Nieuw Arch. Wisk. (3), 1 (1953), 33–41
- D. L. Wright, Algebras which resemble symmetric algebras, Ph.D. thesis, Columbian Univ., New York, 1975, 112 pp.
补充文件
