Об операторных оценках для эллиптических уравнений в многомерных областях с сильно искривленной границей

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Рассматривается система полулинейных эллиптических уравнений второго порядка в многомерной области. Граница такой области произвольным образом искривляется, оставаясь в тонком слое вдоль невозмущенной границы. На искривленной границе задается условие Дирихле или условие Неймана. В случае условия Неймана на структуру искривления накладываются дополнительные достаточно естественные и весьма слабые условия. Наложенные условия позволяют рассмотреть очень широкий класс искривлений, включая, например, классическую быстро осциллирующую границу. Показано, что когда упомянутый тонкий слой сжимается и искривленная граница приближается к невозмущенной, усреднение рассматриваемой задачи приводит к той же системе уравнений с теми же краевыми условиями, но уже на предельной границе. Основной результат – доказательство соответствующих операторных $W_2^1$- и $L_2$-оценок.Библиография: 29 названий.

Об авторах

Денис Иванович Борисов

Институт математики с вычислительным центром, Уфимский научный центр Российской академии наук, г. Уфа; Российский университет дружбы народов, г. Москва

Автор, ответственный за переписку.
Email: borisovdi@yandex.ru
доктор физико-математических наук, без звания

Радим Радикович Сулейманов

Уфимский университет науки и технологий

Email: radimsul@mail.ru

Список литературы

  1. Э. Санчес-Паленсия, Неоднородные среды и теория колебаний, Мир, М., 1984, 472 с.
  2. О. А. Олейник, Г. А. Иосифьян, А. С. Шамаев, Математические задачи теории сильно неоднородных упругих сред, Изд-во Моск. ун-та, М., 1990, 312 с.
  3. А. Г. Беляев, А. Г. Михеев, А. С. Шамаев, “Дифракция плоской волны на быстроосциллирующей поверхности”, Ж. вычисл. матем. и матем. физ., 32:8 (1992), 1258–1272
  4. В. В. Грушин, С. Ю. Доброхотов, “Осреднение в задаче о длинных волнах на воде над участком дна с быстрыми осцилляциями”, Матем. заметки, 95:3 (2014), 359–375
  5. В. А. Козлов, С. А. Назаров, “Асимптотика спектра задачи Дирихле для бигармонического оператора в области с сильно изрезанной границей”, Алгебра и анализ, 22:6 (2010), 127–184
  6. С. А. Назаров, “Асимптотика решения и моделирование задачи Дирихле в угловой области с быстроосциллирующей границей”, Алгебра и анализ, 19:2 (2007), 183–225
  7. С. А. Назаров, “Асимптотика решений и моделирование задач теории упругости в области с быстроосциллирующей границей”, Изв. РАН. Сер. матем., 72:3 (2008), 103–158
  8. С. Е. Пастухова, “Эффект осциллирующей границы при усреднении одной задачи климатизации”, Дифференц. уравнения, 37:9 (2001), 1216–1222
  9. Y. Amirat, O. Bodart, G. A. Chechkin, A. L. Piatnitski, “Boundary homogenization in domains with randomly oscillating boundary”, Stochastic Process. Appl., 121:1 (2011), 1–23
  10. J. M. Arrieta, S. M. Bruschi, “Very rapidly varying boundaries in equations with nonlinear boundary conditions. The case of a non uniformly Lipschitz deformation”, Discrete Contin. Dyn. Syst. Ser. B, 14:2 (2010), 327–351
  11. G. R. Barrenechea, P. Le Tallec, F. Valentin, “New wall laws for the unsteady incompressible Navier–Stokes equations on rough domains”, M2AN Math. Model. Numer. Anal., 36:2 (2002), 177–203
  12. G. A. Chechkin, A. Friedman, A. L. Piatnitski, “The boundary-value problem in domains with very rapidly oscillating boundary”, J. Math. Anal. Appl., 231:1 (1999), 213–234
  13. E. N. Dancer, D. Daners, “Domain perturbation for elliptic equations subject to Robin boundary conditions”, J. Differential Equations, 138:1 (1997), 86–132
  14. M. K. Gobbert, C. A. Ringhofer, “An asymptotic analysis for a model of chemical vapor deposition on a microstructured surface”, SIAM J. Appl. Math., 58:3 (1998), 737–752
  15. W. Jäger, A. Mikelic, “Couette flows over a rough boundary and drag reduction”, Comm. Math. Phys., 232:3 (2003), 429–455
  16. Myong-Hwan Ri, Effective wall-laws for the Stokes equations over curved rough boundaries
  17. N. Neuss, M. Neuss-Radu, A. Mikelic, “Effective laws for the Poisson equation on domains with curved oscillating boundaries”, Appl. Anal., 85:5 (2006), 479–502
  18. D. Borisov, G. Cardone, L. Faella, C. Perugia, “Uniform resolvent convergence for strip with fast oscillating boundary”, J. Differential Equations, 255:12 (2013), 4378–4402
  19. Д. И. Борисов, “Об операторных оценках для плоских областей с нерегулярным искривлением границы: условия Дирихле и Неймана”, Проблемы матем. анализа, 116 (2022), 69–84
  20. Д. И. Борисов, Р. Р. Сулейманов, “Об операторных оценках для эллиптических операторов со смешанными краевыми условиями в двумерных областях с быстро осциллирующей границей”, Матем. заметки, 116:2 (2024), 163–184
  21. В. Г. Мазья, Пространства С. Л. Соболева, Изд-во Ленингр. ун-та, Л., 1985, 416 с.
  22. М. М. Вайнберг, Вариационный метод и метод монотонных операторов в теории нелинейных уравнений, Наука, М., 1972, 416 с.
  23. Ю. А. Дубинский, “Нелинейные эллиптические и параболические уравнения”, Итоги науки и техн. Сер. Соврем. пробл. мат., 9 (1976), 5–130, ВИНИТИ, М.
  24. Т. Като, Теория возмущений линейных операторов, Мир, М., 1972, 740 с.
  25. С. Е. Пастухова, “Об оценках усреднения для сингулярно возмущенных операторов”, Проблемы матем. анализа, 106 (2020), 149–168
  26. G. Griso, “Interior error estimate for periodic homogenization”, Anal. Appl. (Singap.), 4:1 (2006), 61–79
  27. N. N. Senik, “Homogenization for non-self-adjoint periodic elliptic operators on an infinite cylinder”, SIAM J. Math. Anal., 49:2 (2017), 874–898
  28. T. A. Suslina, “Homogenization of the Dirichlet problem for elliptic systems: $L_2$-operator error estimates”, Mathematika, 59:2 (2013), 463–476
  29. T. A. Suslina, “Homogenization of the Neumann problem for elliptic systems with periodic coefficients”, SIAM J. Math. Anal., 45:6 (2013), 3453–3493

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Борисов Д.И., Сулейманов Р.Р., 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).