О емкостях, соизмеримых с гармоническими

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Пусть $\mathcal L$ – однородный эллиптический дифференциальный оператор второго порядка в $\mathbb R^N$, $N\geqslant 3$, с постоянными комплексными коэффициентами. В терминах емкостей $\gamma_{\mathcal L}$ описываются устранимые особенности $\mathrm L^{\infty}$-ограниченных решений уравнений $\mathcal Lf=0$, $\gamma_{\Delta}$ – это классические гармонические емкости теории потенциала. Доказывается соизмеримость $\gamma_{\mathcal L}$ и $\gamma_{\Delta}$ при всех $\mathcal L$ и соответствующих $N$. В доказательстве используются некоторые идеи Х. Толсы. Даются различные следствия указанной соизмеримости, в частности, критерии равномерной приближаемости функций решениями уравнений $\mathcal Lf=0$ формулируются в терминах гармонических емкостей. Библиография: 19 названий.

Об авторах

Максим Яковлевич Мазалов

Национальный исследовательский университет "Московский энергетический институт" в г. Смоленске; Санкт-Петербургский государственный университет

Автор, ответственный за переписку.
Email: maksimmazalov@yandex.ru
доктор физико-математических наук, доцент

Список литературы

  1. П. В. Парамонов, К. Ю. Федоровский, “О равномерной и $C^1$-приближаемости функций на компактах в $mathbb{R}^2$ решениями эллиптических уравнений второго порядка”, Матем. сб., 190:2 (1999), 123–144
  2. П. В. Парамонов, К. Ю. Федоровский, “Явный вид фундаментальных решений некоторых эллиптических уравнений и связанные с ними $B$- и $C$-емкости”, Матем. сб., 214:4 (2023), 114–131
  3. R. Harvey, J. C. Polking, “A notion of capacity which characterizes removable singularities”, Trans. Amer. Math. Soc., 169 (1972), 183–195
  4. М. Я. Мазалов, “Критерий равномерной приближаемости индивидуальных функций решениями однородных эллиптических уравнений второго порядка с постоянными комплексными коэффициентами”, Матем. сб., 211:9 (2020), 60–104
  5. Л. Карлесон, Избранные проблемы теории исключительных множеств, Мир, М., 1971, 126 с.
  6. М. В. Келдыш, “О разрешимости и устойчивости задачи Дирихле”, УМН, 1941, № 8, 171–231
  7. М. Я. Мазалов, “Критерий равномерной приближаемости на произвольных компактах для решений эллиптических уравнений”, Матем. сб., 199:1 (2008), 15–46
  8. П. В. Парамонов, “О метрических свойствах $C$-емкостей, связанных с решениями сильно эллиптических уравнений второго порядка в $mathbb R^2$”, Матем. сб., 213:6 (2022), 111–124
  9. М. Я. Мазалов, “Равномерное приближение функций решениями однородных сильно эллиптических уравнений второго порядка на компактах в $mathbb R^2$”, Изв. РАН. Сер. матем., 85:3 (2021), 89–126
  10. А. Л. Вольберг, В. Я. Эйдерман, “Неоднородный гармонический анализ: 16 лет развития”, УМН, 68:6(414) (2013), 3–58
  11. X. Tolsa, “Painleve's problem and the semiadditivity of analytic capacity”, Acta Math., 190:1 (2003), 105–149
  12. П. В. Парамонов, “Равномерные аппроксимации функций решениями сильно эллиптических уравнений второго порядка на компактах в $mathbb R^2$”, Матем. сб., 212:12 (2021), 77–94
  13. J. Verdera, “$C^m$-approximation by solutions of elliptic equations, and Calderon–Zygmund operators”, Duke Math. J., 55:1 (1987), 157–187
  14. Н. Н. Тарханов, Ряд Лорана для решений эллиптических систем, Наука, Новосибирск, 1991, 317 с.
  15. R. Harvey, J. Polking, “Removable singularities of solutions of linear partial differential equations”, Acta Math., 125 (1970), 39–56
  16. А. Г. Витушкин, “Аналитическая емкость множеств в задачах теории приближений”, УМН, 22:6(138) (1967), 141–199
  17. Н. С. Ландкоф, Основы современной теории потенциала, Наука, М., 1966, 515 с.
  18. И. Стейн, Сингулярные интегралы и дифференциальные свойства функций, Мир, М., 1973, 342 с.
  19. П. В. Парамонов, “Критерии индивидуальной $C^m$-приближаемости функций решениями однородных эллиптических уравнений второго порядка на компактах в $mathbb R^N$”, Матем. сб., 209:6 (2018), 83–97

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Мазалов М.Я., 2024

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).