Derivative of the Minkowski function: optimal estimates

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

It is well known that the derivative of the Minkowski function $?(x)$, if it exists, can take only two values, $0$ and $+\infty$. It is also known that the value of $?'(x)$ at a point $x=[0;a_1,a_2,…,a_t,…]$ is related to the limiting behaviour of the arithmetic mean $(a_1+a_2+…+a_t)/t$. In particular, as shown by Moshchevitin and Dushistova, if $a_1+a_2+…+a_t>(\kappa_2+\varepsilon)t$, where $\varepsilon>0$ and $\kappa_2\approx 4.4010487$ is some explicitly given constant, then $?'(x)=0$. They also showed that $\kappa_2$ cannot be replaced by a smaller constant. We consider the dual problem: how small can the quantity $\kappa_2t-a_1+a_2+…+a_t$ be if it is known that $?'(x)=0$? We obtain optimal estimates in this problem.Bibliography: 9 titles.

Sobre autores

Dmitry Gayfulin

Steklov Mathematical Institute of Russian Academy of Sciences

Candidate of physico-mathematical sciences, no status

Bibliografia

  1. H. Minkowski, “Zur Geometrie der Zahlen”, Verhandlungen des dritten Internationalen Mathematiker-Kongresses (Heidelberg, 1904), B. G. Teubner, Leipzig, 1905, 164–173
  2. R. Salem, “On some singular monotonic functions which are strictly increasing”, Trans. Amer. Math. Soc., 53:3 (1943), 427–439
  3. P. Viader, J. Paradis, L. Bibiloni, “A new light on Minkowski's $?(x)$ function”, J. Number Theory, 73:2 (1998), 212–227
  4. J. Paradis, P. Viader, L. Bibiloni, “The derivative of Minkowski's $?(x)$ function”, J. Math. Anal. Appl., 253:1 (2001), 107–125
  5. И. Д. Кан, “Методы получения оценок континуантов”, Фундамент. и прикл. матем., 16:6 (2010), 95–108
  6. A. A. Dushistova, I. D. Kan, N. G. Moshchevitin, “Differentiability of the Minkowski question mark function”, J. Math. Anal. Appl., 401:2 (2013), 774–794
  7. Д. Р. Гайфулин, И. Д. Кан, “Производная функции Минковского”, Изв. РАН. Сер. матем., 85:4 (2021), 5–52
  8. D. Gayfulin, On the derivative of the Minkowski question-mark function, 2021
  9. T. S. Motzkin, E. G. Straus, “Some combinatorial extremum problems”, Proc. Amer. Math. Soc., 7:6 (1956), 1014–1021

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Gayfulin D.R., 2022

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).