О метрических свойствах $C$-емкостей, связанных с решениями сильно эллиптических уравнений второго порядка в $\mathbb R^2$

Обложка
  • Авторы: Парамонов П.В.1,2,3
  • Учреждения:
    1. Московский государственный университет имени М. В. Ломоносова, механико-математический факультет
    2. Санкт-Петербургский государственный университет
    3. Московский центр фундаментальной и прикладной математики
  • Выпуск: Том 213, № 6 (2022)
  • Страницы: 111-124
  • Раздел: Статьи
  • URL: https://ogarev-online.ru/0368-8666/article/view/133455
  • DOI: https://doi.org/10.4213/sm9676
  • ID: 133455

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В работе установлен ряд метрических свойств емкостей, в терминах которых ранее были получены критерии равномерной приближаемости функций решениями сильно эллиптических уравнений второго порядка на компактах в $\mathbb R^2$. В качестве следствий получены новые, более естественные критерии приближаемости в индивидуальной форме. Сформулированы представляющие интерес нерешенные задачи. Библиография: 13 названий.

Об авторах

Петр Владимирович Парамонов

Московский государственный университет имени М. В. Ломоносова, механико-математический факультет; Санкт-Петербургский государственный университет; Московский центр фундаментальной и прикладной математики

Email: petr.paramonov@list.ru

Список литературы

  1. R. Harvey, J. C. Polking, “A notion of capacity which characterizes removable singularities”, Trans. Amer. Math. Soc., 169 (1972), 183–195
  2. П. В. Парамонов, “Новые критерии равномерной приближаемости гармоническими функциями на компактах в $mathbb R^2$”, Комплексный анализ и его приложения, Сборник статей. К 100-летию со дня рождения Бориса Владимировича Шабата, 85-летию со дня рождения Анатолия Георгиевича Витушкина и 85-летию со дня рождения Андрея Александровича Гончара, Труды МИАН, 298, МАИК “Наука/Интерпериодика”, М., 2017, 216–226
  3. М. Я. Мазалов, “Критерий равномерной приближаемости индивидуальных функций решениями однородных эллиптических уравнений второго порядка с постоянными комплексными коэффициентами”, Матем. сб., 211:9 (2020), 60–104
  4. Л. Хeрмандер, Анализ линейных дифференциальных операторов с частными производными, т. 1, Теория распределений и анализ Фурье, Мир, М., 1986, 464 с.
  5. J. Verdera, “$C^m$-approximation by solutions of elliptic equations, and Calderon–Zygmund operators”, Duke Math. J., 55:1 (1987), 157–187
  6. П. В. Парамонов, “Равномерные аппроксимации функций решениями сильно эллиптических уравнений второго порядка на компактах в $mathbb R^2$”, Матем. сб., 212:12 (2021), 77–94
  7. М. Я. Мазалов, “Критерий равномерной приближаемости на произвольных компактах для решений эллиптических уравнений”, Матем. сб., 199:1 (2008), 15–46
  8. М. Я. Мазалов, “Равномерное приближение функций решениями однородных сильно эллиптических уравнений второго порядка на компактах в $mathbb R^2$”, Изв. РАН. Сер. матем., 85:3 (2021), 89–126
  9. П. В. Парамонов, К. Ю. Федоровский, “О равномерной и $C^1$-приближаемости функций на компактах в $mathbb{R}^2$ решениями эллиптических уравнений второго порядка”, Матем. сб., 190:2 (1999), 123–144
  10. Н. С. Ландкоф, Основы современной теории потенциала, Наука, М., 1966, 515 с.
  11. В. Я. Эйдерман, “Оценки потенциалов и $delta$-субгармонических функций вне исключительных множеств”, Изв. РАН. Сер. матем., 61:6 (1997), 181–218
  12. А. Г. Витушкин, “Аналитическая емкость множеств в задачах теории приближений”, УМН, 22:6(138) (1967), 141–199
  13. Г. М. Голузин, Геометрическая теория функций комплексного переменного, 2-е изд., Наука, М., 1966, 628 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Парамонов П.В., 2022

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).