Probabilities of small deviations of a critical Galton–Watson process with infinite variance of the number of the direct descendants of particles

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We study the asymptotic behaviour of small deviation probabilities for a critical Galton–Watson process with infinite variance of the offspring sizes of particles and apply the result obtained to investigate the structure of a reduced critical Galton-Watson process.

Sobre autores

Vladimir Vatutin

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia

Email: vatutin@mi-ras.ru
Scopus Author ID: 6701377350
Researcher ID: Q-4558-2016
Doctor of physico-mathematical sciences, Professor

Elena Dyakonova

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia

Email: elena@mi-ras.ru
Scopus Author ID: 6507996691
Researcher ID: Q-6278-2016
Doctor of physico-mathematical sciences, Head Scientist Researcher

Yakubdzhan Khusanbaev

V. I. Romanovskiy Institute of Mathematics of the Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan

Email: yakubjank@mail.ru

Bibliografia

  1. K. B. Athreya, “Coalescence in the recent past in rapidly growing populations”, Stochastic Process. Appl., 122:11 (2012), 3757–3766
  2. K. B. Athreya, “Coalescence in critical and subcritical Galton–Watson branching processes”, J. Appl. Probab., 49:3 (2012), 627–638
  3. K. B. Athreya, P. E. Ney, Branching processes, Grundlehren Math. Wiss., 196, Springer, Berlin, 1972, xi+287 pp.
  4. N. O'Connell, “The genealogy of branching processes and the age of our most recent common ancestor”, Adv. in Appl. Probab., 27:2 (1995), 418–442
  5. R. Durrett, “The genealogy of critical branching processes”, Stochastic Process. Appl., 8:1 (1978), 101–116
  6. K. Fleischmann, U. Prehn, “Ein Grenzwertsatz für subkritische Verzweigungsprozesse mit endlich vielen Typen von Teilchen”, Math. Nachr., 64 (1974), 357–362
  7. K. Fleischmann, R. Siegmund-Schultze, “The structure of reduced critical Galton–Watson processes”, Math. Nachr., 79 (1977), 233–241
  8. S. C. Harris, S. G. G. Johnston, M. I. Roberts, “The coalescent structure of continuous-time Galton–Watson trees”, Ann. Appl. Probab., 30:3 (2020), 1368–1414
  9. O. A. Hernandez, S. Harris, J. C. Pardo, The coalescent structure of multitype continuous-time Galton–Watson trees
  10. H. Kesten, P. Ney, F. Spitzer, “The Galton–Watson process with mean one and finite variance”, Теория вероятн. и ее примен., 11:4 (1966), 579–611
  11. E. Seneta, “The Galton–Watson process with mean one”, J. Appl. Probab., 4:3 (1967), 489–495
  12. R. S. Slack, “A branching process with mean one and possibly infinite variance”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 9:2 (1968), 139–145

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Vatutin V.A., Dyakonova E.E., Khusanbaev Y.M., 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).