Knot as a complete invariant of a Morse-Smale 3-diffeomorphism with four fixed points

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

It is known that the topological conjugacy class of a Morse-Smale flows with unique saddle is defined by the equivalence class of the Hopf knot in S2×S1">S2×S1 that is the projection of the one-dimensional saddle separatrix onto the basin of attraction of the nodal point, and the ambient manifold of a diffeomorphism in this class is the 3-sphere. In the present paper a similar result is obtained for gradient-like diffeomorphisms with exactly two saddle points and unique heteroclinic curve.

Sobre autores

Olga Pochinka

National Research University – Higher School of Economics in Nizhny Novgorod

Autor responsável pela correspondência
Email: olga-pochinka@yandex.ru
Doctor of physico-mathematical sciences, no status

Elena Talanova

National Research University – Higher School of Economics in Nizhny Novgorod; National Research Lobachevsky State University of Nizhny Novgorod

Email: eltalanova72@gmail.com

Danila Shubin

National Research University – Higher School of Economics in Nizhny Novgorod

Email: schub.danil@yandex.ru

Bibliografia

  1. C. Bonatti, V. Grines, O. Pochinka, “Topological classification of Morse–Smale diffeomorphisms on 3-manifolds”, Duke Math. J., 168:13 (2019), 2507–2558
  2. P. Kirk, C. Livingston, “Knot invariants in 3-manifolds and essential tori”, Pacific J. Math., 197:1 (2001), 73–96
  3. P. M. Akhmet'ev, T. V. Medvedev, O. V. Pochinka, “On the number of the classes of topological conjugacy of Pixton diffeomorphisms”, Qual. Theory Dyn. Syst., 20:3 (2021), 76, 15 pp.
  4. B. Mazur, “A note on some contractible 4-manifolds”, Ann. of Math. (2), 73:1 (1961), 221–228
  5. C. Bonatti, V. Z. Grines, “Knots as topological invariants for gradient-like diffeomorphisms of the sphere $S^3$”, J. Dynam. Control Systems, 6:4 (2000), 579–602
  6. D. Pixton, “Wild unstable manifolds”, Topology, 16:2 (1977), 167–172
  7. В. З. Гринес, Е. В. Жужома, В. C. Медведев, “О диффеоморфизмах Морса–Смейла с четырьмя периодическими точками на замкнутых ориентируемых многообразиях”, Матем. заметки, 74:3 (2003), 369–386
  8. V. S. Afraimovich, M. I. Rabinovich, P. Varona, “Heteroclinic contours in neural ensembles and the winnerless competition principle”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 14:4 (2004), 1195–1208
  9. V. Z. Grines, T. V. Medvedev, O. V. Pochinka, Dynamical systems on 2- and 3-manifolds, Dev. Math., 46, Springer, Cham, 2016, xxvi+295 pp.
  10. B. Шмуклер, O. Починка, “Бифуркации, меняющие тип гетероклинических кривых 3-диффеоморфизмов Морса–Смейла”, Таврический вестник информатики и математики, 50:1 (2021), 101–114
  11. T. V. Medvedev, O. V. Pochinka, “The wild Fox–Artin arc in invariant sets of dynamical systems”, Dyn. Syst., 33:4 (2018), 660-666

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pochinka O.V., Talanova E.A., Shubin D.D., 2023

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).