Explicit formulae for extremals in sub-Lorentzian and Finsler problems on 2D and 3D Lie groups

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Questions relating to the search of geodesics in a series of left-invariant problems with sub-Lorentzian and Finsler structure are under consideration. Explicit formulae for extremals are found in terms of trigonometric functions of convex trigonometry. In sub-Lorentzian problems the machinery of the new trigonometric functions $\sinh_\Omega$ and $\cosh_\Omega$, generalizing $\sinh$ and $\cosh$ to the case of an unbounded convex set $\Omega\subset\mathbb R^2$, is particularly useful.

Авторлар туралы

Evgeny Ladeishchikov

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia

Email: evgen310864@gmail.com
without scientific degree, no status

Lev Lokutsievskiy

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia

Email: lion.lokut@gmail.com
ORCID iD: 0000-0002-8083-4296
Scopus Author ID: 35148203500
ResearcherId: ABE-7153-2021
Doctor of physico-mathematical sciences, no status

Nikita Prilepin

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia

Email: nickprilepin@yandex.ru

Әдебиет тізімі

  1. M. Grochowski, “Geodesics in the sub-Lorentzian geometry”, Bull. Polish Acad. Sci. Math., 50:2 (2002), 161–178
  2. M. Grochowski, “Properties of reachable sets in the sub-Lorentzian geometry”, J. Geom. Phys., 59:7 (2009), 885–900
  3. Der-Chen Chang, I. Markina, A. Vasil'ev, “Sub-Lorentzian geometry on anti-de Sitter space”, J. Math. Pures Appl. (9), 90:1 (2008), 82–110
  4. E. Grong, A. Vasil'ev, “Sub-Riemannian and sub-Lorentzian geometry on $operatorname{SU}(1,1)$ and on its universal cover”, J. Geom. Mech., 3:2 (2011), 225–260
  5. A. Korolko, I. Markina, “Nonholonomic Lorentzian geometry on some $mathbb H$-type groups”, J. Geom. Anal., 19:4 (2009), 864–889
  6. V. Yu. Protasov, “Antinorms on cones: duality and applications”, Linear Multilinear Algebra, 70:22 (2022), 7387–7413
  7. A. A. Ardentov, L. V. Lokutsievskiy, Yu. L. Sachkov, “Extremals for a series of sub-Finsler problems with 2-dimensional control via convex trigonometry”, ESAIM Control Optim. Calc. Var., 27 (2021), 32, 52 pp.
  8. Yu. L. Sachkov, “Lorentzian distance on the Lobachevsky plane”, Nonlinearity, 37:9 (2024), 095027, 35 pp.
  9. A. Agrachev, D. Barilari, “Sub-Riemannian structures on 3D Lie groups”, J. Dyn. Control Syst., 18:1 (2012), 21–44
  10. L. V. Lokutsievskiy, “Explicit formulae for geodesics in left-invariant sub-Finsler problems on Heisenberg groups via convex trigonometry”, J. Dyn. Control Syst., 27:4 (2021), 661–681

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Ladeishchikov E.A., Lokutsievskiy L.V., Prilepin N.V., 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).