Forms of del Pezzo surfaces of degree 5 and 6

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We obtain necessary and sufficient condition for the existence of del Pezzo surfaces of degrees 5">5 and 6">6 over a field K">K with a prescribed action of absolute Galois group Gal(Ksep/K)">Gal(Ksep/K) on the graph of (1)">(1)-curves. We also compute the automorphism groups of del Pezzo surfaces of degree 5">5 over arbitrary fields.

Sobre autores

Alexandr Zaitsev

Laboratory of algebraic geometry and its applications, National Research University "Higher School of Economics" (HSE)

Autor responsável pela correspondência
Email: math-net2025_06@mi-ras.ru

without scientific degree, no status

Bibliografia

  1. I. V. Dolgachev, V. A. Iskovskikh, “Finite subgroups of the plane Cremona group”, Algebra, arithmetic, and geometry, In honor of Yu. I. Manin, v. I, Progr. Math., 269, Birkhäuser Boston, Boston, MA, 2009, 443–548
  2. I. V. Dolgachev, V. A. Iskovskikh, “On elements of prime order in the plane Cremona group over a perfect field”, Int. Math. Res. Not. IMRN, 2009:18 (2009), 3467–3485
  3. E. A. Yasinsky, Automorphisms of real del Pezzo surfaces and the real plane Cremona group
  4. J.-P. Serre, “A Minkowski-style bound for the orders of the finite subgroups of the Cremona group of rank 2 over an arbitrary field”, Mosc. Math. J., 9:1 (2009), 183–198
  5. A. Beauville, “Finite subgroups of $mathrm{PGL}_2(K)$”, Vector bundles and complex geometry, Contemp. Math., 522, Amer. Math. Soc., Providence, RI, 2010, 23–29
  6. M. Garcia-Armas, “Finite group actions on curves of genus zero”, J. Algebra, 394 (2013), 173–181
  7. I. V. Dolgachev, Classical algebraic geometry. A modern view, Cambridge Univ. Press, Cambridge, 2012, xii+639 pp.
  8. A. Skorobogatov, Torsors and rational points, Cambridge Tracts in Math., 144, Cambridge Univ. Press, Cambridge, 2001, viii+187 pp.
  9. Hsueh-Yung Lin, E. Shinder, S. Zimmermann, Factorization centers in dimension two and the Grothendieck ring of varieties
  10. И. Р. Шафаревич, Основы алгебраической геометрии, 3-е изд., МЦНМО, М., 2007, 590 с.
  11. The Stacks project
  12. A. N. Skorobogatov, “On a theorem of Enriques–Swinnerton-Dyer”, Ann. Fac. Sci. Toulouse Math. (6), 2:3 (1993), 429–440
  13. A. Auel, M. Bernardara, “Semiorthogonal decompositions and birational geometry of del Pezzo surfaces over arbitrary fields”, Proc. Lond. Math. Soc. (3), 117:1 (2018), 1–64
  14. Incomplete failures of the inverse Galois problem
  15. Б. Л. ван дер Варден, Алгебра, Наука, М., 1976, 648 с.
  16. И. Р. Шафаревич, “Построение полей алгебраических чисел с заданной разрешимой группой Галуа”, Изв. АН СССР. Сер. матем., 18:6 (1954), 525–578
  17. N. Vila, “On the inverse problem of Galois theory”, Publ. Mat., 36:2B (1992), 1053–1073
  18. C. O. Горчинский, К. А. Шрамов, Неразветвленная группа Брауэра и ее приложения, МЦНМО, М., 2018, 200 с.
  19. J. Schneider, S. Zimmermann, “Algebraic subgroups of the plane Cremona group over a perfect field”, Epijournal Geom. Algebrique, 5 (2021), 14, 48 pp.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Zaitsev A.V., 2023

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).