Modular values of continuants with fixed prefixes and endings

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Consider the set of finite words in a finite alphabet $\mathbf{A}\subseteq\mathbb{N}$. Add a prefix $V$ and an ending $W$, which are some fixed finite words in the alphabet $\mathbb{N}$, to each word. We interpret the resulting words as the expansions in finite continued fractions of some rational numbers in the interval $(0,1)$. Next consider the irreducible denominators of these rational numbers; we denote the set of those denominators that do not exceed some quantity $N\in \mathbb{N}$ (which is an increasing parameter) by $\mathfrak{D}^{N}_{\mathbf{A},V,W}$. We prove that under certain conditions on $\mathbf{A}$, $V$ and $W$, for each prime number $Q$ proportional to a fixed fractional power of $N$ the set $\mathfrak{D}^{N}_{\mathbf{A},V,W}$ contains almost all possible residues modulo $Q$, and the remainder in this asymptotic formula involves a power reduction with respect to $Q$.

About the authors

Igor' Davidovich Kan

Moscow Aviation Institute (National Research University), Moscow, Russia

Email: igor.kan@list.ru
Candidate of physico-mathematical sciences, Associate professor

References

  1. S. K. Zaremba, “La methode des “bons treillis” pour le calcul des integrales multiples”, Applications of number theory to numerical analysis (Univ. Montreal, Montreal, QC, 1971), Academic Press, New York–London, 1972, 39–119
  2. J. Bourgain, A. Kontorovich, “On Zaremba's conjecture”, Ann. of Math. (2), 180:1 (2014), 137–196
  3. N. G. Moshchevitin, On some open problems in diophantine approximation
  4. D. A. Frolenkov, I. D. Kan, “A strengthening of a theorem of Bourgain–Kontorovich. II”, Mosc. J. Comb. Number Theory, 4:1 (2014), 78–117
  5. ShinnYih Huang, “An improvement to Zaremba's conjecture”, Geom. Funct. Anal., 25:3 (2015), 860–914
  6. M. Magee, Hee Oh, D. Winter, “Uniform congruence counting for Schottky semigroups in $operatorname{SL}_2(mathbf{Z})$”, J. Reine Angew. Math., 2019:753 (2019), 89–135
  7. I. D. Shkredov, “Growth in Chevalley groups relatively to parabolic subgroups and some applications”, Rev. Mat. Iberoam., 38:6 (2022), 1945–1973
  8. N. Moshchevitin, B. Murphy, I. Shkredov, “Popular products and continued fractions”, Israel J. Math., 238:2 (2020), 807–835
  9. N. G. Moshchevitin, I. D. Shkredov, “On a modular form of Zaremba's conjecture”, Pacific J. Math., 309:1 (2020), 195–211
  10. D. Hensley, “The Hausdorff dimensions of some continued fraction Cantor sets”, J. Number Theory, 33:2 (1989), 182–198
  11. D. Hensley, “A polynomial time algorithm for the Hausdorff dimension of continued fraction Cantor sets”, J. Number Theory, 58:1 (1996), 9–45
  12. D. Hensley, “The distribution of badly approximable numbers and continuants with bounded digits”, Theorie des nombres (Quebec, QC, 1987), de Gruyter, Berlin, 1989, 371–385

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2026 Kan I.D.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).