Modular values of continuants with fixed prefixes and endings
- Authors: Kan I.D.1
-
Affiliations:
- Moscow Aviation Institute (National Research University), Moscow, Russia
- Issue: Vol 217, No 1 (2026)
- Pages: 54-88
- Section: Articles
- URL: https://ogarev-online.ru/0368-8666/article/view/378949
- DOI: https://doi.org/10.4213/sm10170
- ID: 378949
Cite item
Abstract
Consider the set of finite words in a finite alphabet $\mathbf{A}\subseteq\mathbb{N}$ . Add a prefix $V$ and an ending $W$ , which are some fixed finite words in the alphabet $\mathbb{N}$ , to each word. We interpret the resulting words as the expansions in finite continued fractions of some rational numbers in the interval $(0,1)$ . Next consider the irreducible denominators of these rational numbers; we denote the set of those denominators that do not exceed some quantity $N\in \mathbb{N}$ (which is an increasing parameter) by $\mathfrak{D}^{N}_{\mathbf{A},V,W}$ . We prove that under certain conditions on $\mathbf{A}$ , $V$ and $W$ , for each prime number $Q$ proportional to a fixed fractional power of $N$ the set $\mathfrak{D}^{N}_{\mathbf{A},V,W}$ contains almost all possible residues modulo $Q$ , and the remainder in this asymptotic formula involves a power reduction with respect to $Q$ .
About the authors
Igor' Davidovich Kan
Moscow Aviation Institute (National Research University), Moscow, Russia
Email: igor.kan@list.ru
Candidate of physico-mathematical sciences, Associate professor
References
- S. K. Zaremba, “La methode des “bons treillis” pour le calcul des integrales multiples”, Applications of number theory to numerical analysis (Univ. Montreal, Montreal, QC, 1971), Academic Press, New York–London, 1972, 39–119
- J. Bourgain, A. Kontorovich, “On Zaremba's conjecture”, Ann. of Math. (2), 180:1 (2014), 137–196
- N. G. Moshchevitin, On some open problems in diophantine approximation
- D. A. Frolenkov, I. D. Kan, “A strengthening of a theorem of Bourgain–Kontorovich. II”, Mosc. J. Comb. Number Theory, 4:1 (2014), 78–117
- ShinnYih Huang, “An improvement to Zaremba's conjecture”, Geom. Funct. Anal., 25:3 (2015), 860–914
- M. Magee, Hee Oh, D. Winter, “Uniform congruence counting for Schottky semigroups in $operatorname{SL}_2(mathbf{Z})$”, J. Reine Angew. Math., 2019:753 (2019), 89–135
- I. D. Shkredov, “Growth in Chevalley groups relatively to parabolic subgroups and some applications”, Rev. Mat. Iberoam., 38:6 (2022), 1945–1973
- N. Moshchevitin, B. Murphy, I. Shkredov, “Popular products and continued fractions”, Israel J. Math., 238:2 (2020), 807–835
- N. G. Moshchevitin, I. D. Shkredov, “On a modular form of Zaremba's conjecture”, Pacific J. Math., 309:1 (2020), 195–211
- D. Hensley, “The Hausdorff dimensions of some continued fraction Cantor sets”, J. Number Theory, 33:2 (1989), 182–198
- D. Hensley, “A polynomial time algorithm for the Hausdorff dimension of continued fraction Cantor sets”, J. Number Theory, 58:1 (1996), 9–45
- D. Hensley, “The distribution of badly approximable numbers and continuants with bounded digits”, Theorie des nombres (Quebec, QC, 1987), de Gruyter, Berlin, 1989, 371–385
Supplementary files

