Connection between coordinate and diagonal arrangement complements

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We study diagonal arrangement complements $D(\mathcal K)$ in $\mathbb C^m$. We consider the class of simplicial complexes $\mathcal K$ in which any two missing faces have a common vertex, and we prove that the coordinate arrangement complement $U(\mathcal K)$ is the double suspension of the diagonal arrangement complement $D(\mathcal K)$. In the case of subspace arrangements in $\mathbb R^m$ the coordinate arrangement complement $U_{\mathbb R}(\mathcal K)$ is the single suspension of $D_{\mathbb R}(\mathcal K)$.

About the authors

Vsevolod Arkadievich Tril

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia; Faculty of Computer Science, National Research University Higher School of Economics, Moscow, Russia

Email: vsevolod.tril@math.msu.ru
ORCID iD: 0009-0004-6431-2211
without scientific degree, no status

References

  1. A. Ayzenberg, “Buchstaber invariant, minimal non-simplices and related”, Osaka J. Math., 53:2 (2016), 377–395
  2. A. Bahri, M. Bendersky, F. R. Cohen, S. Gitler, “The polyhedral product functor: a method of decomposition for moment-angle complexes, arrangements and related spaces”, Adv. Math., 225:3 (2010), 1634–1668
  3. A. Björner, L. Lovasz, “Linear decision trees, subspace arrangements, and Möbius functions”, J. Amer. Math. Soc., 7:3 (1994), 677–706
  4. A. Björner, V. Welker, “The homology of “$k$-equal” manifolds and related partition lattices”, Adv. Math., 110:2 (1995), 277–313
  5. A. Björner, G. M. Ziegler, “Combinatorial stratification of complex arrangements”, J. Amer. Math. Soc., 5:1 (1992), 105–149
  6. V. M. Buchstaber, T. E. Panov, Toric topology, Math. Surveys Monogr., 204, Amer. Math. Soc., Providence, RI, 2015, xiv+518 pp.
  7. N. Dobrinskaya, Loops on polyhedral products and diagonal arrangements
  8. M. Goresky, R. MacPherson, Stratified Morse theory, Ergeb. Math. Grenzgeb. (3), 14, Springer-Verlag, Berlin, 1988, xiv+272 pp.
  9. J. Grbic, T. Panov, S. Theriault, Jie Wu, “The homotopy types of moment-angle complexes for flag complexes”, Trans. Amer. Math. Soc., 368:9 (2016), 6663–6682
  10. J. Grbic, S. Theriault, “The homotopy type of the complement of a coordinate subspace arrangement”, Topology, 46:4 (2007), 357–396
  11. K. Iriye, D. Kishimoto, “Fat-wedge filtration and decomposition of polyhedral products”, Kyoto J. Math., 59:1 (2019), 1–51
  12. M. de Longueville, C. A. Schultz, “The cohomology rings of complements of subspace arrangements”, Math. Ann., 319:4 (2001), 625–646
  13. T. Panov, V. Tril, Permutohedral complex and complements of diagonal subspace arrangements
  14. I. Peeva, V. Reiner, V. Welker, “Cohomology of real diagonal subspace arrangements via resolutions”, Compositio Math., 117:1 (1999), 99–115

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Tril V.A.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).