A-flows with codimension one basic sets

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For flows satisfying Smale's Axiom A on closed manifolds of dimension $n\ge3$ the structure of codimension-one basis sets is described, which are either extending attractors or contracting repellers. For such nonmixing basis sets special trapping neighbourhoods with boundary components homeomorphic to ${\mathbb S}^{n-2}\times{\mathbb S}^1$ are constructed. This makes it possible to construct a compactification (support) of the basin of a basis set. which is a locally trivial fibre bundle over the circle, and the extension of the original flow to the support is a dynamical suspension and a structurally stable flow of attractor-repeller type.

About the authors

Evgenii Viktorovich Zhuzhoma

National Research University Higher School of Economics, Nizhnii Novgorod, Russia

Email: zhuzhoma@mail.ru
ORCID iD: 0000-0001-8682-7591
Doctor of physico-mathematical sciences, Professor

Vladislav Sergeevich Medvedev

National Research University Higher School of Economics, Nizhnii Novgorod, Russia

Email: medvedev-1942@mail.ru
ORCID iD: 0000-0001-6369-0000
Candidate of physico-mathematical sciences

References

  1. S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73 (1967), 747–817
  2. S. Smale, “Morse inequalities for a dynamical system”, Bull. Amer. Math. Soc., 66 (1960), 43–49
  3. C. Robinson, “Structural stability of $C^1$ diffeomorphisms”, J. Differential Equations, 22:1 (1976), 28–73
  4. R. Mañe, “On the creation of homoclinic points”, Inst. Hautes Etudes Sci. Publ. Math., 66 (1988), 139–159
  5. S. Hayashi, “Connecting invariant manifolds and the solution of the $C^1$ stability and $Omega$-stability conjectures for flows”, Ann. of Math. (2), 145:1 (1997), 81–137
  6. S. Kh. Aranson, G. R. Belitsky, E. V. Zhuzhoma, Introduction to the qualitative theory of dynamical systems on surfaces, Transl. from the Russian manuscript, Transl. Math. Monogr., 153, Amer. Math. Soc., Providence, RI, 1996, xiv+325 pp.
  7. V. Grines, E. Zhuzhoma, Surface laminations and chaotic dynamical systems, Izhevsk Inst. Comput. Sci., Moscow–Izhevsk, 2021, 502 pp.
  8. C. Robinson, Dynamical systems. Stability, symbolic dynamics, and chaos, Stud. Adv. Math., 2nd ed., CRC Press, Boca Raton, FL, 1999, xiv+506 pp.
  9. I. Garashchuk, A. Kazakov, D. Sinelshchikov, “Scenarios for the appearance of strange attractors in a model of three interacting microbubble contrast agents”, Chaos Solitons Fractals, 182 (2024), 114785, 11 pp.
  10. I. R. Garashchuk, D. I. Sinelshchikov, A. O. Kazakov, N. A. Kudryashov, “Hyperchaos and multistability in the model of two interacting microbubble contrast agents”, Chaos, 29:6 (2019), 063131, 16 pp.
  11. S. Gonchenko, A. Kazakov, D. Turaev, “Wild pseudohyperbolic attractor in a four-dimensional Lorenz system”, Nonlinearity, 34:4 (2021), 2018–2047
  12. A. Kazakov, “On bifurcations of Lorenz attractors in the Lyubimov–Zaks model”, Chaos, 31:9 (2021), 093118, 19 pp.
  13. A. Kazakov, A. Murillo, A. Viero, K. Zaichikov, “Numerical study of discrete Lorenz-like attractors”, Regul. Chaotic Dyn., 29:1 (2024), 78–99
  14. R. F. Williams, “Expanding attractors”, Inst. Hautes Etudes Sci. Publ. Math., 43 (1974), 169–203
  15. V. Grines, E. Zhuzhoma, “On structurally stable diffeomorphisms with codimension one expanding attractors”, Trans. Amer. Math. Soc., 357:2 (2005), 617–667
  16. V. Medvedev, E. Zhuzhoma, “On the existence of codimension-one nonorientable expanding attractors”, J. Dyn. Control Syst., 11:3 (2005), 405–411
  17. S. E. Newhouse, “On codimension one Anosov diffeomorphisms”, Amer. J. Math., 92:3 (1970), 761–770
  18. A. Verjovsky, “Codimension one Anosov flows”, Bol. Soc. Mat. Mexicana (2), 19:2 (1974), 49–77
  19. C. Pugh, M. Shub, “The $Omega$-stability theorem for flows”, Invent. Math., 11 (1970), 150–158
  20. R. Bowen, “Periodic orbits for hyperbolic flows”, Amer. J. Math., 94 (1972), 1–30
  21. J. Franks, B. Williams, “Anomalous Anosov flows”, Global theory of dynamical systems (Northwestern Univ., Evanston, IL, 1979), Lecture Notes in Math., 819, Springer, Berlin, 1980, 158–174
  22. J. Christy, “Branched surfaces and attractors. I. Dynamic branched surfaces”, Trans. Amer. Math. Soc., 336:2 (1993), 759–784
  23. V. Z. Grines, E. V. Zhuzhoma, “Expanding attractors”, Regul. Chaotic Dyn., 11:2 (2006), 225–246
  24. C. Robinson, R. Williams, “Classification of expanding attractors: an example”, Topology, 15:4 (1976), 321–323
  25. C. Morales, “Axiom A flows with a transverse torus”, Trans. Amer. Math. Soc., 355:2 (2003), 735–745
  26. F. Beguin, C. Bonatti, Bin Yu, “Building Anosov flows on 3-manifolds”, Geom. Topol., 21:3 (2017), 1837–1930
  27. M. W. Hirsch, C. C. Pugh, M. Shub, Invariant manifolds, Lecture Notes in Math., 583, Springer-Verlag, Berlin-New York, 1977, ii+149 pp.
  28. M. Hirsch, J. Palis, C. Pugh, M. Shub, “Neighborhoods of hyperbolic sets”, Invent. Math., 9:2 (1970), 121–134
  29. R. Bowen, “Mixing Anosov flows”, Topology, 15:1 (1976), 77–79
  30. J. F. Plante, “Anosov flows”, Amer. J. Math., 94:3 (1972), 729–754
  31. V. Medvedev, E. Zhuzhoma, “Two-dimensional attractors of A-flows and fibred links on three-manifolds”, Nonlinearity, 35:5 (2022), 2192–2205
  32. S. Kh. Aranson, R. V. Plykin, A. Yu. Zhirov, E. V. Zhuzhoma, “Exact upper bounds for the number of one-dimensional basic sets of surface $A$-diffeomorphisms”, J. Dyn. Control Syst., 3:1 (1997), 1–18
  33. M. Brunella, “Separating the basic sets of a nontransitive Anosov flow”, Bull. London Math. Soc., 25:5 (1993), 487–490

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Zhuzhoma E.V., Medvedev V.S.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).