Prismatic cohomology and de Rham–Witt forms
- Authors: Molokov S.V.1
-
Affiliations:
- Faculty of Mathematics, National Research University Higher School of Economics, Moscow, Russia
- Issue: Vol 216, No 10 (2025)
- Pages: 77-100
- Section: Articles
- URL: https://ogarev-online.ru/0368-8666/article/view/331247
- DOI: https://doi.org/10.4213/sm10214
- ID: 331247
Cite item
Abstract
For any prism $(A,d)$ , we construct an analogue of Fontaine's map $W_r(A/d) \to A/d\phi(d)\cdots\phi^{r-1}(d)$ . Subsequently, we define a canonical map from de Rham–Witt forms to prismatic cohomology in the perfect case and prove that it is an isomorphism. Using this result, we obtain an explicit description of the prismatic cohomology $H^i((S/A)_\Prism,\mathcal{O}_\Prism/d\phi(d)\cdots\phi^{n-1}(d))$, where $S$ is the $p$ -completion of a polynomial algebra over $A/d$ .
Keywords
About the authors
Semen Vyacheslavovich Molokov
Faculty of Mathematics, National Research University Higher School of Economics, Moscow, Russia
Email: sam-molokov1@yandex.ru
without scientific degree, no status
References
- Y. Andre, “La conjecture du facteur direct”, Publ. Math. Inst. Hautes Etudes Sci., 127 (2018), 71–93
- J. Anschütz, A.-C. Le Bras, Prismatic Dieudonne theory
- J. Anschütz, A.-C. Le Bras, “The $p$-completed cyclotomic trace in degree 2”, Ann. K-Theory, 5:3 (2020), 539–580
- B. Bhatt, Geometric aspects of $p$-adic Hodge theory: prismatic cohomology, Eilenberg Lectures at Columbia Univ.
- B. Bhatt, J. Lurie, Absolute prismatic cohomology
- B. Bhatt, M. Morrow, P. Scholze, “Integral $p$-adic Hodge theory”, Publ. Math. Inst. Hautes Etudes Sci., 128 (2018), 219–397
- B. Bhatt, P. Scholze, “Prisms and prismatic cohomology”, Ann. of Math. (2), 196:3 (2022), 1135–1275
- J. Borger, Witt vectors, lambda-rings, and arithmetic jet spaces, Course at the Univ. of Copenhagen, 2016
- L. Illusie, “Complexe de de Rham–Witt et cohomologie cristalline”, Ann. Sci. Ecole Norm. Sup. (4), 12:4 (1979), 501–661
- L. Illusie, De Rham–Witt complexes and $p$-adic Hodge theory, Pre-notes for Sapporo seminar, March 2011
- L. Illusie, M. Raynaud, “Les suites spectrales associees au complexe de de Rham–Witt”, Publ. Math. Inst. Hautes Etudes Sci., 57 (1983), 73–212
- A. Joyal, “$delta$-anneaux et vecteurs de Witt”, C. R. Math. Rep. Acad. Sci. Canada, 7:3 (1985), 177–182
- A. Langer, T. Zink, “De Rham–Witt cohomology for a proper and smooth morphism”, J. Inst. Math. Jussieu, 3:2 (2004), 231–314
- The Stacks project
- Yu. J. F. Sulyma, Prisms and Tambara functors I: Twisted powers, transversality, and the perfect sandwich
- Yichao Tian, “Finiteness and duality for the cohomology of prismatic crystals”, J. Reine Angew. Math., 2023:800 (2023), 217–257
Supplementary files

