Maximal Calderon–Zygmund operators and Weyl multipliers

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Let $T_k$, $k=1,2,…,N$, be a sequence of bounded operators on $L^p$, $1, and $T^*(f)=\max_{1\le k\le N}|T_k(f)|$. For some choices of $T_k$ it is of interest the problem of finding the optimal constant $c(N)$ for the bound

$$
\|T^*\|_{L^p\to L^p}\lesssim c(N) \max_{1\le k\le N}\|T_k\|_{L^p\to L^p}.
$$
We consider this problem for Calderon–Zygmund operators. It was prove by first two authors that $c(N)\lesssim \log N$ when $T_k$ are general Calderon–Zygmund operators with uniformly bounded parameters. In this note we consider Calderon–Zygmund operators with kernels, having certain dyadic decomposition. We prove for such operators $c(N)\lesssim\sqrt{\log N}$. Applying this bound, we prove that the sequence $\log n$ is an almost everywhere convergence Weyl multiplier for any rearranged dyadic block trigonometric polynomials.

About the authors

Grigori Artashesovich Karagulyan

Institute of Mathematics of National Academy of Sciences of RA, Yerevan, Republic of Armenia; Faculty of Mathematics and Mechanics, Yerevan State University, Yerevan, Republic of Armenia

Email: g.karagulyan@ysu.am
Doctor of physico-mathematical sciences, Professor

Michael Thoreau Lacey

School of Mathematics, Georgia Institute of Technology, Atlanta, GA, USA

Email: lacey@math.gatech.edu
Doctor of physico-mathematical sciences, Professor

Khazhakanoush V.. Navoyan

Institute of Mathematics of National Academy of Sciences of RA, Yerevan, Republic of Armenia

Email: khvnavoyan@gmail.com

References

  1. A. Alfonseca, F. Soria, A. Vargas, “An almost-orthogonality principle in $L^2$ for directional maximal functions”, Harmonic analysis at Mount Holyoke (South Hadley, MA, 2001), Contemp. Math., 320, Amer. Math. Soc., Providence, RI, 2003, 1–7
  2. M. Bateman, “Kakeya sets and directional maximal operators in the plane”, Duke Math. J., 147:1 (2009), 55–77
  3. S. Y. A. Chang, J. M. Wilson, T. H. Wolff, “Some weighted norm inequalities concerning the Schrödinger operators”, Comment. Math. Helv., 60:2 (1985), 217–246
  4. C. Demeter, F. Di Plinio, “Logarithmic $L^p$ bounds for maximal directional singular integrals in the plane”, J. Geom. Anal., 24:1 (2014), 375–416
  5. L. Grafakos, P. Honzik, A. Seeger, “On maximal functions for Mikhlin–Hörmander multipliers”, Adv. Math., 204:2 (2006), 363–378
  6. A. Kamont, G. A. Karagulyan, “On wavelet polynomials and Weyl multipliers”, J. Anal. Math., 150:2 (2023), 529–545
  7. G. A. Karagulyan, “On unboundedness of maximal operators for directional Hilbert transforms”, Proc. Amer. Math. Soc., 135:10 (2007), 3133–3141
  8. G. A. Karagulyan, “On systems of non-overlapping Haar polynomials”, Ark. Mat., 58:1 (2020), 121–131
  9. G. A. Karagulyan, M. T. Lacey, “On logarithmic bounds of maximal sparse operators”, Math. Z., 294:3-4 (2020), 1271–1281
  10. N. H. Katz, “Maximal operators over arbitrary sets of directions”, Duke Math. J., 97:1 (1999), 67–79
  11. A. Kolmogoroff, D. Menchoff, “Sur la convergence des series de fonctions orthogonales”, Math. Z., 26:1 (1927), 432–441
  12. D. Menchoff, “Sur les series de fonctions orthogonales. I”, Fund. Math., 4 (1923), 82–105
  13. F. Moricz, “On the convergence of Fourier series in every arrangement of the terms”, Acta Sci. Math. (Szeged), 31 (1970), 33–41
  14. S. Nakata, “On the divergence of rearranged Fourier series of square integrable functions”, Acta Sci. Math. (Szeged), 32 (1971), 59–70
  15. S. Nakata, “On the divergence of rearranged trigonometric series”, Tohoku Math. J. (2), 27:2 (1975), 241–246
  16. S. Nakata, “On the unconditional convergence of Walsh series”, Anal. Math., 5:3 (1979), 201–205
  17. S. Nakata, “On the divergence of rearranged Walsh series”, Tohoku Math. J. (2), 24:2 (1972), 275–280
  18. W. Orlicz, “Zur Theorie der Orthogonalreihen”, Bull. Intern. Acad. Sci. Polon. Cracovie, 1927, 81–115
  19. S. N. Poleščuk, “On the unconditional convergence of orthogonal series”, Anal. Math., 7:4 (1981), 265–275
  20. H. Rademacher, “Einige Sätze über Reihen von allgemeinen Orthogonalfunktionen”, Math. Ann., 87:1-2 (1922), 112–138
  21. A. Nagel, E. M. Stein, S. Wainger, “Differentiation in lacunary directions”, Proc. Nat. Acad. Sci. U.S.A., 75:3 (1978), 1060–1062
  22. E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Math. Ser., 43, Monogr. Harmon. Anal., III, Princeton Univ. Press, Princeton, NJ, 1993, xiv+695 pp.
  23. K. Tandori, “Über die orthogonalen Funktionen. X. (Unbedingte Konvergenz.)”, Acta Sci. Math. (Szeged), 23 (1962), 185–221
  24. K. Tandori, “Beispiel der Fourierreihe einer quadratisch-integrierbaren Funktion, die in gewisser Anordnung ihrer Glieder überall divergiert”, Acta Math. Acad. Sci. Hungar., 15 (1964), 165–173
  25. K. Tandori, “Über die Divergenz der Walshschen Reihen”, Acta Sci. Math. (Szeged), 27 (1966), 261–263
  26. Z. Zahorski, “Une serie de Fourier permutee d'une fonction de classe $L^{2}$ divergente presque partout”, C. R. Acad. Sci. Paris, 251 (1960), 501–503

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Karagulyan G.A., Lacey M.T., Navoyan K.V.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).