Lower semicontinuity of relative entropy disturbance and its consequences
- Authors: Shirokov M.E.1
-
Affiliations:
- Steklov Mathematical Institute of Russian Academy of Sciences
- Issue: Vol 215, No 11 (2024)
- Pages: 122-156
- Section: Articles
- URL: https://ogarev-online.ru/0368-8666/article/view/279065
- DOI: https://doi.org/10.4213/sm10107
- ID: 279065
Cite item
Abstract
It is proved that the decrease of quantum relative entropy under the action of a quantum operation is a lower semicontinuous function of the pair of its arguments. This property implies, in particular, that the local discontinuity jumps of the quantum relative entropy do not increase under the action of quantum operations. It also implies the lower semicontinuity of the modulus of the joint convexity of quantum relative entropy (as a function of ensembles of quantum states).Various corollaries and applications of these results are considered.Bibliography: 42 titles.
About the authors
Maksim Evgenievich Shirokov
Steklov Mathematical Institute of Russian Academy of Sciences
Email: msh@mi-ras.ru
Scopus Author ID: 7004175647
ResearcherId: K-8365-2013
Doctor of physico-mathematical sciences, Head Scientist Researcher
References
- H. Umegaki, “Conditional expectation in an operator algebra. IV. Entropy and information”, Kōdai Math. Sem. Rep., 14:2 (1962), 59–85
- B. Schumacher, M. D. Westmoreland, Relative entropy in quantum information theory
- V. Vedral, “The role of relative entropy in quantum information theory”, Rev. Modern Phys., 74:1 (2002), 197–234
- M. Ohya, D. Petz, Quantum entropy and its use, Theoret. Math. Phys., Corr. 2nd pr., Springer-Verlag, Berlin, 2004, 357 pp.
- A. Wehrl, “General properties of entropy”, Rev. Modern Phys., 50:2 (1978), 221–260
- А. С. Холево, Статистическая структура квантовой теории, ИКИ, М.–Ижевск, 2003, 191 с.
- G. Lindblad, “Completely positive maps and entropy inequalities”, Comm. Math. Phys., 40:2 (1975), 147–151
- G. Lindblad, “Expectations and entropy inequalities for finite quantum systems”, Comm. Math. Phys., 39:2 (1974), 111–119
- D. Petz, “Sufficiency of channels over von Neumann algebras”, Quart. J. Math. Oxford Ser. (2), 39:153 (1988), 97–108
- D. Sutter, M. Tomamichel, A. W. Harrow, “Strengthened monotonicity of relative entropy via pinched Petz recovery map”, IEEE Trans. Inform. Theory, 62:5 (2016), 2907–2913
- M. M. Wilde, “Recoverability in quantum information theory”, Proc. A, 471:2182 (2015), 20150338, 19 pp.
- M. Junge, R. Renner, D. Sutter, M. M. Wilde, A. Winter, “Universal recovery maps and approximate sufficiency of quantum relative entropy”, Ann. Henri Poincare, 19:10 (2018), 2955–2978
- M. E. Shirokov, “Strong convergence of quantum channels: continuity of the Stinespring dilation and discontinuity of the unitary dilation”, J. Math. Phys., 61:8 (2020), 082204, 14 pp.
- А. С. Холево, Квантовые системы, каналы, информация, МЦНМО, М., 2010, 328 с.
- М. Е. Широков, “Критерий сходимости квантовой относительной энтропии и его использование”, Матем. сб., 213:12 (2022), 137–174
- M. M. Wilde, Quantum information theory, Cambridge Univ. Press, Cambridge, 2013, xvi+655 pp.
- B. Simon, Operator theory, Compr. Course Anal., Part 4, Amer. Math. Soc., Providence, RI, 2015, xviii+749 pp.
- А. С. Холево, “Некоторые оценки для количества информации, передаваемого квантовым каналом связи”, Пробл. передачи информ., 9:3 (1973), 3–11
- W. F. Stinespring, “Positive functions on $C^*$-algebras”, Proc. Amer. Math. Soc., 6:2 (1955), 211–216
- G. F. Dell'Antonio, “On the limits of sequences of normal states”, Comm. Pure Appl. Math., 20:2 (1967), 413–429
- M. J. Donald, “Further results on the relative entropy”, Math. Proc. Cambridge Philos. Soc., 101:2 (1987), 363–373
- F. Buscemi, M. Horodecki, “Towards a unified approach to information-disturbance tradeoffs in quantum measurements”, Open Syst. Inf. Dyn., 16:1 (2009), 29–48
- F. Buscemi, S. Das, M. M. Wilde, “Approximate reversibility in the context of entropy gain, information gain, and complete positivity”, Phys. Rev. A, 93:6 (2016), 062314, 11 pp.
- M. Berta, F. G. S. L. Brandao, C. Majenz, M. M. Wilde, Deconstruction and conditional erasure of quantum correlations
- A. Capel, A. Lucia, D. Perez-Garcia, “Quantum conditional relative entropy and quasi-factorization of the relative entropy”, J. Phys. A, 51:48 (2018), 484001, 41 pp.
- T. S. Cubitt, M. B. Ruskai, G. Smith, “The structure of degradable quantum channels”, J. Math. Phys., 49:10 (2008), 102104, 27 pp.
- М. Е. Широков, “Меры корреляций в бесконечномерных квантовых системах”, Матем. сб., 207:5 (2016), 93–142
- M. E. Shirokov, “Correlation measures of a quantum state and information characteristics of a quantum channel”, J. Math. Phys., 64:11 (2023), 112201, 31 pp.
- M. E. Shirokov, “Convergence conditions for the quantum relative entropy and other applications of the generalized quantum Dini lemma”, Lobachevskii J. Math., 43:7 (2022), 1755–1777
- М. Рид, Б. Саймон, Методы современной математической физики, т. 1, Функциональный анализ, Мир, М., 1977, 357 с.
- M. E. Shirokov, A. V. Bulinski, “On quantum channels and operations preserving finiteness of the von Neumann entropy”, Lobachevskii J. Math., 41:12 (2020), 2383–2396
- T. M. Cover, J. A. Thomas, Elements of information theory, 2nd ed., Wiley-Interscience [John Wiley & Sons], Hoboken, NJ, 2006, xxiv+748 pp.
- C. M. Bishop, Pattern recognition and machine learning, Inf. Sci. Stat., Springer, New York, 2006, xx+738 pp.
- F. Nielsen, On the Kullback–Leibler divergence between location-scale densities
- В. И. Богачев, Основы теории меры, т. 2, НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2003, 576 с.
- П. Биллингсли, Сходимость вероятностных мер, Наука, М., 1977, 351 с.
- Ch. Gerry, P. L. Knight, Introductory quantum optics, Cambridge Univ. Press, Cambridge, 2005, xiv+317 pp.
- R. J. Glauber, “Coherent and incoherent states of the radiation field”, Phys. Rev. (2), 131:6 (1963), 2766–2788
- E. C. G. Sudarshan, “Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams”, Phys. Rev. Lett., 10:7 (1963), 277–279
- М. Е. Широков, “О полунепрерывности снизу квантовой условной взаимной информации и ее следствиях”, Математика квантовых технологий, Сборник статей, Труды МИАН, 313, МИАН, М., 2021, 219–244
- G. Lindblad, “Entropy, information and quantum measurements”, Comm. Math. Phys., 33:4 (1973), 305–322
- A. Bluhm, A. Capel, P. Gondolf, A. Perez-Hernandez, “Continuity of quantum entropic quantities via almost convexity”, IEEE Trans. Inform. Theory, 69:9 (2023), 5869–5901
Supplementary files

