Generalized Jacobi-Chasles's theorem in non-Euclidean spaces

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Классическая теорема Якоби–Шаля утверждает, что касательные линии, проведенные к каждой точке геодезической на $n$-осном эллипсоиде в евклидовом $n$-мерном пространстве, касаются помимо этого эллипсоида еще $n-2$ софокусных с ним квадрик, общих для всех точек этой геодезической. Эта теорема обеспечивает интегрируемость геодезического потока на эллипсоиде. Недавние результаты Г. В. Белозерова и В. А. Кибкало показывают, что аналогичная теорема справедлива для произвольного пересечения софокусных квадрик в евклидовом пространстве. В настоящей работе показано, что геодезический поток на пересечении нескольких софокусных квадрик в псевдоевклидовых пространствах $\mathbb R^{p,q}$, а также в пространствах постоянной кривизны является интегрируемым. В качестве следствия доказан аналогичный результат для софокусных биллиардов на таких пересечениях. При этом показано, что в случае размерности 2 последний результат нельзя распространить на поверхности, локально неизометричные пространствам постоянной кривизны.Библиография: 15 названий.

About the authors

Gleb Vladimirovich Belozerov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Anatoly Timofeevich Fomenko

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics; Moscow Center for Fundamental and Applied Mathematics

Email: fomenko@mech.math.msu.su
Doctor of physico-mathematical sciences, Professor

References

  1. C. G. J. Jacobi, “Note von der geodätischen Linie auf einem Ellipsoid und den verschiedenen Anwendungen einer merkwürdigen analytischen Substitution”, J. Reine Angew. Math., 1839:19 (1839), 309–313
  2. К. Якоби, Лекции по динамике, ОНТИ, М.–Л., 1936, 272 с.
  3. M. Chasles, “Sur les lignes geodesiques et les lignes de courbure des surfaces du second degre”, J. Math. Pures Appl., 11 (1846), 5–20
  4. В. И. Арнольд, Математические методы классической механики, 3-е изд., Наука, М., 1989, 472 с.
  5. Г. В. Белозеров, “Интегрируемость геодезического потока на пересечении нескольких софокусных квадрик”, Докл. РАН. Матем., информ., проц. упр., 509 (2023), 5–7
  6. Г. В. Белозеров, “Геодезический поток на пересечении нескольких софокусных квадрик в $mathbb{R}^n$”, Матем. сб., 214:7 (2023), 3–26
  7. B. Khesin, S. Tabachnikov, “Pseudo-Riemannian geodesics and billiards”, Adv. Math., 221:4 (2009), 1364–1396
  8. В. Драгович, М. Раднович, “Топологические инварианты эллиптических биллиардов и геодезических потоков эллипсоидов в пространстве Минковского”, Фундамент. и прикл. матем., 20:2 (2015), 51–64
  9. Е. Е. Каргинова, “Слоение Лиувилля топологических биллиардов на плоскости Минковского”, Фундамент. и прикл. матем., 22:6 (2019), 123–150
  10. Е. Е. Каргинова, “Биллиарды, ограниченные дугами софокусных квадрик на плоскости Минковского”, Матем. сб., 211:1 (2020), 3–31
  11. V. Dragovic, M. Radnovic, “Bicentennial of the Great Poncelet Theorem (1813–2013): current advances”, Bull. Amer. Math. Soc. (N.S.), 51:3 (2014), 373–445
  12. В. В. Козлов, Д. В. Трещeв, Биллиарды. Генетическое введение в динамику систем с ударами, Изд-во Моск. ун-та, М., 1991, 168 с.
  13. С. В. Болотин, “Интегрируемые бильярды на поверхностях постоянной кривизны”, Матем. заметки, 51:2 (1992), 20–28
  14. Ф. М. Морc, Г. Фешбах, Методы теоретической физики, ИЛ, М., 1958, 1816 с.
  15. Ш. Кобаяси, К. Номидзу, Основы дифференциальной геометрии, т. 1, 2, Наука, М., 1981, 344 с., 415 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Белозеров Г.V., Фоменко А.T.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).