О приближениях одного сингулярного интеграла на отрезке рациональными интегральными операторами Фурье–Чебышёва

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Исследуются аппроксимации на отрезке $[-1,1]$ сингулярных интегралов вида$$\widehat{f}(x)=\int_{-1}^{1}\frac{f(t)}{t-x}\sqrt{1-t^2} dt, \qquad x \in [-1,1], $$двумя рациональными интегральными операторами, в некотором смысле связанными между собой. Первый из них – интегральный оператор Фурье–Чебышёва, ассоциированный с системой рациональных функций Чебышёва–Маркова. Второй оператор является его образом при преобразовании изучаемым сингулярным интегралом. Изучаются аппроксимационные свойства соответствующих полиномиальных аналогов обоих операторов в случае, когда плотность сингулярного интеграла удовлетворяет на отрезке $[-1,1]$ условию Липшица порядка $\alpha \in (0,1]$. Исследуются рациональные аппроксимации на отрезке $[-1,1]$ сингулярного интеграла с плотностью, имеющей степенную особенность. Рассматривается случай, когда аппроксимирующие рациональные функции имеют произвольное фиксированное количество геометрически различных полюсов, и случай, когда параметры аппроксимирующих рациональных функций представляют собой некоторые модификации “ньюменовских” параметров. Библиография: 34 названия.

Об авторах

Павел Геннадьевич Поцейко

Гродненский государственный университет им. Я. Купалы

ORCID iD: 0000-0001-7835-0500
кандидат физико-математических наук, доцент

Евгений Алексеевич Ровба

Гродненский государственный университет им. Я. Купалы

Email: rovba.ea@gmail.com
ORCID iD: 0000-0002-1265-1965
SPIN-код: 3925-0232
доктор физико-математических наук, профессор

Список литературы

  1. Ф. Д. Гахов, Краевые задачи, Физматгиз, М., 1958, 543 с.
  2. Н. И. Мусхелишвили, Сингулярные интегральные уравнения, 3-е изд., испр. и доп., Наука, М., 1968, 511 с.
  3. F. Erdogan, G. D. Gupta, “On the numerical solution of singular integral equations”, Quart. Appl. Math., 29 (1972), 525–534
  4. D. Elliott, D. F. Paget, “On the convergence of a quadrature rule for evaluating certain Cauchy principal value integrals”, Numer. Math., 23 (1975), 311–319
  5. М. А. Шешко, “О сходимости квадратурных процессов для сингулярного интеграла”, Изв. вузов. Матем., 1976, № 12, 108–118
  6. А. В. Саакян, “Квадратурные формулы типа Гаусса для сингулярных интегралов”, Проблемы механики тонких деформируемых тел, Посв. 80-летию акад. С. А. Амбарцумяна, Гитутюн (Наука), НАН РА, Ереван, 2002, 259–265
  7. Ш. С. Хубежты, “Квадратурные формулы для сингулярных интегралов с ядром Коши”, Владикавк. матем. журн., 10:4 (2008), 61–75
  8. Ш. С. Хубежты, А. О. Цуцаев, “Квадратурные формулы для сингулярных интегралов, имеющих почти гауссовскую степень точности”, Изв. вузов. Сев.-кавказ. рег. Естеств. науки, 2015, № 2, 53–57
  9. Б. Г. Габдулхаев, “Конечномерные аппроксимации сингулярных интегралов и прямые методы решения особых интегральных и интегро-дифференциальных уравнений”, Итоги науки и техн. Сер. Мат. анал., 18, ВИНИТИ, М., 1980, 251–307
  10. В. Н. Русак, “Равномерная рациональная аппроксимация сингулярных интегралов”, Изв. НАН Беларуси. Сер. физ.-матем. наук, 1993, № 2, 22–26
  11. А. Н. Бокша, “Приближение сингулярных интегралов рациональными функциями в равномерной метрике”, Вестн. Белорус. гос. ун-та. Сер. 1. Физ. Матем. Инф., 1997, № 3, 68–71
  12. В. Н. Русак, А. Х. Уазис, “Рациональная аппроксимация сингулярных интегралов с дифференцируемой плотностью”, Изв. БГПУ. Сер. 3. Физ. Матем. Инф. Биол. Геогр., 59:1 (2009), 8–11
  13. В. П. Моторный, “Приближение некоторых классов сингулярных интегралов алгебраическими многочленами”, Укр. матем. журн., 53:3 (2001), 331–345
  14. S. Takenaka, “On the orthogonal functions and a new formula of interpolation”, Japan. J. Math., 2 (1925), 129–145
  15. F. Malmquist, “Sur la determination d'une classe de fonctions analytiques par leurs dans un ensemble donne de points”, Comptes rendus du 6ème congrès des mathematiciens scandinaves (Kopenhagen, 1925), Det Hoffenbergske Etablissement, Kopenhagen, 1926, 253–259
  16. М. М. Джрбашян, “К теории рядов Фурье по рациональным функциям”, Изв. АН Арм. ССР. Сер. физ.-матем. наук, 9:7 (1956), 3–28
  17. М. М. Джрбашян, А. А. Китбалян, “Об одном обобщении полиномов Чебышeва”, Докл. АН Арм. ССР, 38:5 (1964), 263–270
  18. Е. А. Ровба, “Об одном прямом методе в рациональной аппроксимации”, Докл. АН БССР, 23:11 (1979), 968–971
  19. P. G. Patseika, Y. A. Rouba, K. A. Smatrytski, “On one rational integral operator of Fourier–Chebyshev type and approximation of Markov functions”, Журн. Белорус. гос. ун-та. Матем. Инф., 2 (2020), 6–27
  20. П. Г. Поцейко, Е. А. Ровба, “Приближения на классах интегралов Пуассона рациональными интегральными операторами Фурье–Чебышeва”, Сиб. матем. журн., 62:2 (2021), 362–386
  21. П. Г. Поцейко, Е. А. Ровба, “Сопряженный рациональный оператор Фурье–Чебышева и его аппроксимационные свойства”, Изв. вузов. Матем., 2022, № 3, 44–60
  22. В. Н. Русак, Рациональные функции как аппарат приближения, БГУ, Минск, 1979, 174 с.
  23. О. В. Бесов, “Оценка приближения периодических функций суммами Фурье”, Матем. заметки, 79:5 (2006), 784–787
  24. О. В. Бесов, Лекции по математическому анализу, 4-е изд., испр. и доп., Физматлит, М., 2020, 476 с.
  25. К. Н. Лунгу, “О наилучших приближениях рациональными функциями с фиксированным числом полюсов”, Матем. сб., 86(128):2(10) (1971), 314–324
  26. К. Н. Лунгу, “О наилучших приближениях рациональными функциями с фиксированным числом полюсов”, Сиб. матем. журн., 25:2 (1984), 151–160
  27. М. А. Евграфов, Асимптотические оценки и целые функции, 3-е изд., испр. и доп., Наука, М., 1979, 320 с.
  28. М. В. Федорюк, Асимптотика. Интегралы и ряды, Наука, М., 1987, 544 с.
  29. Е. А. Ровба, Е. Г. Микулич, “Константы в приближении функции $|x|$ интерполяционными рациональными процессами”, Докл. НАН Беларуси, 53:6 (2009), 11–15
  30. А. А. Гончар, “О скорости рациональной аппроксимации непрерывных функций с характерными особенностями”, Матем. сб., 73(115):4 (1967), 630–638
  31. D. J. Newman, “Rational approximation to $|x|$”, Michigan Math. J., 11:1 (1964), 11–14
  32. П. Г. Поцейко, Е. А. Ровба, “Об оценках равномерных приближений рациональными интегральными операторами Фурье–Чебышева при определенном выборе полюсов”, Матем. заметки, 113:6 (2023), 876–894
  33. H. R. Stahl, “Best uniform rational approximation of $x^alpha$ on $[0,1]$”, Acta Math., 190:2 (2003), 241–306
  34. А. П. Буланов, “Асимптотика для наименьших уклонений $|x|$ от рациональных функций”, Матем. сб., 76(118):2 (1968), 288–303

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Поцейко П.Г., Ровба Е.А., 2024

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).