Towards finite generation of higher rational rank valuations

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We propose a finite generation conjecture for the valuation which computes the stability threshold of a log Fano pair. We also initiate a degeneration strategy for attacking the conjecture.Bibliography: 17 titles.

About the authors

Chenyang Xu

Princeton University, Department of Mathematics; Department of Mathematics, Massachusetts Institute of Technology; Peking University

References

  1. $K$-stability and related topics problems. 3. Special degeneration, AIM Problem Lists, 2020
  2. H. Ahmadinezhad, Ziquan Zhuang, $K$-stability of Fano varieties via admissible flags
  3. C. Birkar, P. Cascini, C. D. Hacon, J. McKernan, “Existence of minimal models for varieties of log general type”, J. Amer. Math. Soc., 23:2 (2010), 405–468
  4. H. Blum, Yuchen Liu, Chenyang Xu, Openness of K-semistability for Fano varieties
  5. H. Blum, Yuchen Liu, Chuyu Zhou, Optimal destabilization of K-unstable Fano varieties via stability thresholds
  6. H. Blum, Chenyang Xu, “Uniqueness of K-polystable degenerations of Fano varieties”, Ann. of Math. (2), 190:2 (2019), 609–656
  7. S. D. Cutkosky, “On finite and nonfinite generation of associated graded rings of Abhyankar valuations”, Singularities, algebraic geometry, commutative algebra, and related topics, Springer, Cham, 2018, 481–490
  8. T. de Fernex, J. Kollar, Chenyang Xu, “The dual complex of singularities”, Higher dimensional algebraic geometry – in honour of Professor Yujiro Kawamata's sixtieth birthday, Adv. Stud. Pure Math., 74, Math. Soc. Japan, Tokyo, 2017, 103–129
  9. J. Kollar, S. Mori, Birational geometry of algebraic varieties, With the collaboration of C. H. Clemens and A. Corti, transl. from the 1998 Japan. original, Cambridge Tracts in Math., 134, Cambridge Univ. Press, Cambridge, 1998, viii+254 pp.
  10. J. Kollar, Singularities of the minimal model program, With the collaboration of S. Kovacs, Cambridge Tracts in Math., 200, Cambridge Univ. Press, Cambridge, 2013, x+370 pp.
  11. J. Kollar, Families of varieties of general type, Book on moduli of surfaces – ongoing project, 2018
  12. R. Lazarsfeld, Positivity in algebraic geometry, v. II, Ergeb. Math. Grenzgeb. (3), 49, Springer-Verlag, Berlin, 2004, xviii+385 pp.
  13. Chi Li, “Minimizing normalized volumes of valuations”, Math. Z., 289:1-2 (2018), 491–513
  14. Chi Li, Chenyang Xu, “Stability of valuations: higher rational rank”, Peking Math. J., 1:1 (2018), 1–79
  15. Chi Li, Chenyang Xu, “Stability of valuations and Kollar components”, J. Eur. Math. Soc. (JEMS), 22:8 (2020), 2573–2627
  16. B. Teissier, “Overweight deformations of affine toric varieties and local uniformization”, Valuation theory in interaction, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2014, 474–565
  17. Chenyang Xu, “A minimizing valuation is quasi-monomial”, Ann. of Math. (2), 191:3 (2020), 1003–1030

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Щу Ч.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).