Общий антиканонический элемент для трехмерных экстремальных стягиваний с одномерными слоями: исключительный случай

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Пусть $(X, C)$ – росток трехмерного многообразия $X$ с терминальными особенностями вдоль связной приведенной полной кривой $C$, допускающего стягивание $f\colon (X, C) \to (Z, o)$ такое, что $C = f^{-1} (o)_{\mathrm{red}}$ и $-K_X$ является $f$-обильным. Предположим, что каждая неприводимая компонента $C$ содержит не более одной точки индекса $>2$. Мы докажем, что общий элемент $D\in |{-}K_X|$ является нормальной поверхностью с дювалевскими особенностями. Библиография: 16 названий.

Об авторах

Шигефуми Мори

Kyoto University Institute for Advanced Study; Research Institute for Mathematical Sciences, Kyoto University; Chubu University

Email: mori@kurims.kyoto-u.ac.jp

Юрий Геннадьевич Прохоров

Математический институт им. В.А. Стеклова Российской академии наук

Email: prokhoro@mi-ras.ru
доктор физико-математических наук, профессор

Список литературы

  1. Yu. Kawamata, “Crepant blowing-up of $3$-dimensional canonical singularities and its application to degenerations of surfaces”, Ann. of Math. (2), 127:1 (1988), 93–163
  2. J. Kollar, S. Mori, “Classification of three-dimensional flips”, J. Amer. Math. Soc., 5:3 (1992), 533–703
  3. J. Kollar, S. Mori, Birational geometry of algebraic varieties, With the collaboration of C. H. Clemens and A. Corti, transl. from the 1998 Japan. original, Cambridge Tracts in Math., 134, Cambridge Univ. Press, Cambridge, 1998, viii+254 pp.
  4. J. Kollar, “Real algebraic threefolds. III. Conic bundles”, J. Math. Sci. (N.Y.), 94:1 (1999), 996–1020
  5. J. Kollar, N. I. Shepherd-Barron, “Threefolds and deformations of surface singularities”, Invent. Math., 91:2 (1988), 299–338
  6. S. Mori, “Flip theorem and the existence of minimal models for $3$-folds”, J. Amer. Math. Soc., 1:1 (1988), 117–253
  7. S. Mori, “On semistable extremal neighborhoods”, Higher dimensional birational geometry (Kyoto, 1997), Adv. Stud. Pure Math., 35, Math. Soc. Japan, Tokyo, 2002, 157–184
  8. S. Mori, “Errata to “Classification of three-dimensional flips””, J. Amer. Math. Soc., 20:1 (2007), 269–271
  9. S. Mori, Yu. Prokhorov, “On $mathbb Q$-conic bundles”, Publ. Res. Inst. Math. Sci., 44:2 (2008), 315–369
  10. S. Mori, Yu. Prokhorov, “On $mathbb Q$-conic bundles. II”, Publ. Res. Inst. Math. Sci., 44:3 (2008), 955–971
  11. S. Mori, Yu. Prokhorov, “On $mathbb Q$-conic bundles. III”, Publ. Res. Inst. Math. Sci., 45:3 (2009), 787–810
  12. S. Mori, Yu. Prokhorov, “Threefold extremal contractions of type (IA)”, Kyoto J. Math., 51:2 (2011), 393–438
  13. Ш. Мори, Ю. Г. Прохоров, “Трехмерные экстремальные окрестности кривой с одной негоренштейновой точкой”, Изв. РАН. Сер. матем., 83:3 (2019), 158–212
  14. Ю. Г. Прохоров, “О дополняемости канонического дивизора для расслоений Мори на коники”, Матем. сб., 188:11 (1997), 99–120
  15. M. Reid, “Young person's guide to canonical singularities”, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math., 46, Part 1, Amer. Math. Soc., Providence, RI, 1987, 345–414
  16. В. В. Шокуров, “Трехмерные логперестройки”, Изв. РАН. Сер. матем., 56:1 (1992), 105–203

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Мори Ш., Прохоров Ю.Г., 2021

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).