Characterization of solutions of strong-weak convex programming problems
- Авторлар: Dudov S.I.1, Osiptsev M.A.1
-
Мекемелер:
- Saratov State University
- Шығарылым: Том 212, № 6 (2021)
- Беттер: 43-72
- Бөлім: Articles
- URL: https://ogarev-online.ru/0368-8666/article/view/142340
- DOI: https://doi.org/10.4213/sm9431
- ID: 142340
Дәйексөз келтіру
Аннотация
Finite-dimensional problems of minimizing a strongly or weakly convex function on a strongly or weakly convex set are considered. Necessary and sufficient conditions for solutions of such problems are presented, which are based on estimates for the behaviour of the objective function on the feasible set taking account of the parameters of strong or weak convexity, as well as certain local features of the set and the function. The mathematical programming problem is considered separately for strongly and weakly convex functions. In addition, necessary conditions for a global and a local solution with differentiable objective function are found, in which a ‘strong’ stationarity condition is assumed to hold. Bibliography: 33 titles.
Авторлар туралы
Sergey Dudov
Saratov State University
Email: dudovsi@info.sgu.ru
Doctor of physico-mathematical sciences, Professor
Mikhail Osiptsev
Saratov State UniversityCandidate of physico-mathematical sciences, Senior Lecturer
Әдебиет тізімі
- J.-P. Vial, “Strong and weak convexity of sets and functions”, Math. Oper. Res., 8:2 (1983), 231–259
- Е. С. Половинкин, М. В. Балашов, Элементы выпуклого и сильно выпуклого анализа, 2-е изд., Физматлит, М., 2007, 438 с.
- Г. Е. Иванов, Слабо выпуклые множества и функции, Физматлит, М., 2006, 351 с.
- Ю. Г. Решетняк, “Об одном обобщении выпуклых поверхностей”, Матем. сб., 40(82):3 (1956), 381–398
- Н. В. Ефимов, С. Б. Стечкин, “Опoрные свойства множеств в банаховых пространствах и чебышевские множества”, Докл. АН СССР, 127:2 (1959), 254–257
- H. Federer, “Curvature measures”, Trans. Amer. Math. Soc., 93:3 (1959), 418–491
- F. H. Clarke, R. J. Stern, P. R. Wolenski, “Proximal smoothness and the lower-$C^2$ property”, J. Convex Anal., 2:1-2 (1995), 117–144
- R. A. Poliquin, R. T. Rockafellar, “Prox-regular functions in variational analysis”, Trans. Amer. Math. Soc., 348:5 (1996), 1805–1838
- R. A. Poliquin, R. T. Rockafellar, L. Thibault, “Local differentiability of distance functions”, Trans. Amer. Math. Soc., 352:11 (2000), 5231–5249
- F. Bernard, L. Thibault, N. Zlateva, “Characterizations of prox-regular sets in uniformly convex Banach spaces”, J. Convex Anal., 13:3-4 (2006), 525–559
- R. Janin, Sur la dualite et la sensibilite dans les problèmes de programmation mathematique, These de Doctorat ès-Sciences Mathematiques, Univ. de Paris, 1974
- R. T. Rockafellar, “Favorable classes of Lipschitz continuous functions in subgradient optimization”, Progress in nondifferentiable optimization, IIASA Collaborative Proc. Ser. CP-82, 8, Internat. Inst. Appl. Systems Anal., Laxenburg, 1982, 125–144
- F. Bernard, L. Thibault, N. Zlateva, “Prox-regular sets and epigraphs in uniformly convex Banach spaces: various regularities and other properties”, Trans. Amer. Math. Soc., 363:4 (2011), 2211–2247
- Z. Y. Wu, “Sufficient global optimality conditions for weakly convex minimization problems”, J. Global Optim., 39:3 (2007), 427–440
- M. V. Balashov, “About the gradient projection algorithm for a strongly convex function and a proximally smooth set”, J. Convex Anal., 24:2 (2017), 493–500
- M. V. Balashov, B. T. Polyak, A. A. Tremba, “Gradient projection and conditional gradient methods for constrained nonconvex minimization”, Numer. Funct. Anal. Optim., 41:7 (2020), 822–849
- Ф. Кларк, Оптимизация и негладкий анализ, Наука, М., 1988, 280 с.
- В. Ф. Демьянов, Л. В. Васильев, Недифференцируемая оптимизация, Наука, М., 1981, 384 с.
- В. Ф. Демьянов, А. М. Рубинов, Основы негладкого анализа и квазидифференциальное исчисление, Наука, М., 1990, 432 с.
- Б. Н. Пшеничный, Выпуклый анализ и экстремальные задачи, Наука, М., 1980, 320 с.
- D. Pallaschke, S. Rolewicz, Foundations of mathematical optimization. Convex analysis without linearity, Math. Appl., Kluwer Acad. Publ., Dordrechet, 1997, xii+582 pp.
- A. Rubinov, Abstract convexity and global optimization, Nonconvex Optim. Appl., 44, Kluwer Acad. Publ., Derrechet, 2000, xviii+490 pp.
- I. Singer, Abstract convex analysis, Canad. Math. Soc. Ser. Monogr. Adv. Texts, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New-York, 1997, xxii+491 pp.
- H. Karimi, J. Nutini, M. Schmidt, “Linear convergence of gradient and proximal-gradient methods under the Polyak–Łojasiewicz condition”, ECML PKDD 2016: Machine learning and knowledge discovery in databases, Lecture Notes in Comput. Sci., 9851, Springer, Cham, 2016, 795–811
- D. Drusvyatskiy, A. S. Lewis, “Error bounds, quadratic growth, and linear convergence of proximal methods”, Math. Oper. Res., 43:3 (2018), 919–948
- Б. Т. Поляк, Введение в оптимизацию, Наука, М., 1983, 384 с.
- D. Damek, D. Drusvyatskiy, K. J. MacPhee, C. Paquette, Subgradient methods for sharp weakly convex functions
- Xiao Li, Zhihui Zhu, A. Man-Cho So, J. D. Lee, Incremental methods for weakly convex optimization
- J. C. Duchi, Feng Ruan, “Stochastic methods for composite and weakly convex optimization problems”, SIAM J. Optim., 28:4 (2018), 3229–3259
- Т. Боннезен, В. Фенхель, Теория выпуклых тел, Фазис, М., 2002, 210 с.
- С. И. Дудов, “Систематизация задач по шаровым оценкам выпуклого компакта”, Матем. сб., 206:9 (2015), 99–120
- С. И. Дудов, Е. А. Мещерякова, “Об асферичности выпуклого тела”, Изв. вузов. Матем., 2015, № 2, 45–58
- S. Dudov, M. Osiptsev, “Uniform estimation of a convex body by a fixed-radius ball”, J. Optim. Theory Appl., 171:2 (2016), 465–480
Қосымша файлдар
