Traces of Sobolev spaces to irregular subsets of metric measure spaces

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Given p(1,), let (X,d,μ) be a metric measure space with uniformly locally doubling measure μ supporting a weak local (1,p)-Poincaré inequality. For each θ[0,p) we characterize the trace space of the Sobolev W1p(X)-space to lower θ-codimensional content regular closed sets SX. In particular, if the space (X,d,μ) is Ahlfors Q-regular for some Q1 and p(Q,), then we obtain an intrinsic description of the trace-space of the Sobolev space W1p(X) to arbitrary closed nonempty sets SX.

About the authors

Alexander Ivanovich Tyulenev

Steklov Mathematical Institute of Russian Academy of Sciences

Author for correspondence.
Email: tyulenev-math@yandex.ru
Candidate of physico-mathematical sciences, Associate professor

References

  1. J. Heinonen, P. Koskela, N. Shanmugalingam, J. T. Tyson, Sobolev spaces on metric measure spaces. An approach based on upper gradients, New Math. Monogr., 27, Cambridge Univ. Press, Cambridge, 2015, xii+434 pp.
  2. N. Gigli, E. Pasqualetto, Lectures on nonsmooth differential geometry, SISSA Springer Ser., 2, Springer, Cham, 2020, xi+204 pp.
  3. L. Ambrosio, N. Gigli, G. Savare, “Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces”, Rev. Mat. Iberoam., 29:3 (2013), 969–996
  4. L. Ambrosio, N. Gigli, G. Savare, “Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below”, Invent. Math., 195:2 (2014), 289–391
  5. N. J. Korevaar, R. M. Schoen, “Sobolev spaces and harmonic maps for metric space targets”, Comm. Anal. Geom., 1:3-4 (1993), 561–659
  6. P. Hajlasz, “Sobolev spaces on an arbitrary metric space”, Potential Anal., 5:4 (1996), 403–415
  7. J. Cheeger, “Differentiability of Lipschitz functions on metric measure spaces”, Geom. Funct. Anal., 9:3 (1999), 428–517
  8. N. Shanmugalingam, “Newtonian spaces: an extension of Sobolev spaces to metric measure spaces”, Rev. Mat. Iberoam., 16:2 (2000), 243–279
  9. N. Gigli, A. Tyulenev, “Korevaar–Schoen's energy on strongly rectifiable spaces”, Calc. Var. Partial Differential Equations, 60:6 (2021), 235, 54 pp.
  10. A. Björn, J. Björn, Nonlinear potential theory on metric spaces, EMS Tracts Math., 17, Eur. Math. Soc. (EMS), Zürich, 2011, xii+403 pp.
  11. R. Gibara, R. Korte, N. Shanmugalingam, Solving a Dirichlet problem for unbounded domains via a conformal transformation
  12. R. Gibara, N. Shanmugalingam, “Trace and extension theorems for homogeneous Sobolev and Besov spaces for unbounded uniform domains in metric measure spaces”, Труды МИАН, 323 (to appear)
  13. A. Jonsson, H. Wallin, Function spaces on subsets of $mathbb{R}^{n}$, Math. Rep., 2, no. 1, Harwood Acad. Publ., London, 1984, xiv+221 pp.
  14. L. Maly, Trace and extension theorems for Sobolev-type functions in metric spaces
  15. L. Maly, N. Shanmugalingam, M. Snipes, “Trace and extension theorems for functions of bounded variation”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 18:1 (2018), 313–341
  16. V. S. Rychkov, “Linear extension operators for restrictions of function spaces to irregular open sets”, Studia Math., 140:2 (2000), 141–162
  17. E. Saksman, T. Soto, “Traces of Besov, Triebel–Lizorkin and Sobolev spaces on metric spaces”, Anal. Geom. Metr. Spaces, 5:1 (2017), 98–115
  18. P. Shvartsman, “On extensions of Sobolev functions defined on regular subsets of metric measure spaces”, J. Approx. Theory, 144:2 (2007), 139–161
  19. P. Shvartsman, “Sobolev $W^{1}_{p}$-spaces on closed subsets of $mathbf{R}^{n}$”, Adv. Math., 220:6 (2009), 1842–1922
  20. P. Shvartsman, “Whitney-type extension theorems for jets generated by Sobolev functions”, Adv. Math., 313 (2017), 379–469
  21. С. К. Водопьянов, А. И. Тюленев, “Пространства Соболева $W^{1}_{p}$ на $d$-толстых замкнутых подмножествах $mathbb{R}^{n}$”, Матем. сб., 211:6 (2020), 40–94
  22. А. И. Тюленев, “О почти точном описании следов пространств Соболева на компактах”, Матем. заметки, 110:6 (2021), 948–953
  23. A. I. Tyulenev, “Almost sharp descriptions of traces of Sobolev $W_{p}^{1}(mathbb{R}^{n})$-spaces to arbitrary compact subsets of $mathbb{R}^{n}$. The case $p in (1,n]$”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 26 (2025) (to appear)
  24. M. Garcia-Bravo, T. Ikonen, Zheng Zhu, Extensions and approximations of Banach-valued Sobolev functions
  25. J. Azzam, R. Schul, “An analyst's traveling salesman theorem for sets of dimension larger than one”, Math. Ann., 370:3-4 (2018), 1389–1476
  26. J. Azzam, M. Villa, “Quantitative comparisons of multiscale geometric properties”, Anal. PDE, 14:6 (2021), 1873–1904
  27. А. И. Тюленев, “Некоторые свойства множеств типа пористости, связанные с $d$-обхватом по Хаусдорфу”, Труды МИАН, 319 (2022), 298–323
  28. E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Math. Ser., 43, Princeton Univ. Press, Princeton, NJ, 1993, xiv+695 pp.
  29. A. P. Calderon, “Estimates for singular integral operators in terms of maximal functions”, Studia Math., 44 (1972), 563–582
  30. Ю. А. Брудный, “Пространства, определяемые с помощью локальных приближений”, Тр. ММО, 24, Изд-во Моск. ун-та, М., 1971, 69–132
  31. P. Shmerkin, Porosity, dimension, and local entropies: a survey
  32. L. Ambrosio, N. Fusco, D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press, New York, 2000, xviii+434 pp.
  33. M. Christ, “A $T(b)$ theorem with remarks on analytic capacity and the Cauchy integral”, Colloq. Math., 60/61:2 (1990), 601–628
  34. J. Martin, W. A. Ortiz, “A Sobolev type embedding theorem for Besov spaces defined on doubling metric spaces”, J. Math. Anal. Appl., 479:2 (2019), 2302–2337
  35. P. Mattila, Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability, Cambridge Stud. Adv. Math., 44, Cambridge Univ. Press, Cambridge, 1995, xii+343 pp.
  36. T. J. Laakso, “Ahlfors $Q$-regular spaces with arbitrary $Q > 1$ admitting weak Poincare inequality”, Geom. Funct. Anal., 10:1 (2000), 111–123
  37. E. Järvenpää, M. Järvenpää, A. Käenmäki, T. Rajala, S. Rogovin, V. Suomala, “Packing dimension and Ahlfors regularity of porous sets in metric spaces”, Math. Z., 266:1 (2010), 83–105
  38. L. Ambrosio, M. Colombo, S. Di Marino, “Sobolev spaces in metric measure spaces: reflexivity and lower semicontinuity of slope”, Variational methods for evolving objects, Adv. Stud. Pure Math., 67, Math. Soc. Japan, Tokyo, 2015, 1–58
  39. L. Ambrosio, “Calculus, heat flow and curvature-dimension bounds in metric measure spaces”, Proceedings of the international congress of mathematicians (Rio de Janeiro, 2018), v. 1, World Sci. Publ., Hackensack, NJ, 2018, 301–340
  40. S. Di Marino, G. Speight, “The $p$-weak gradient depends on $p$”, Proc. Amer. Math. Soc., 143:12 (2015), 5239–5252
  41. X. Tolsa, “$BMO$, $H^{1}$ and Calderon–Zygmund operators for non doubling measures”, Math. Ann., 319:1 (2001), 89–149
  42. A. I. Tyulenev, “Restrictions of Sobolev $W_{p}^{1}(mathbb{R}^{2})$-spaces to planar rectifiable curves”, Ann. Fenn. Math., 47:1 (2022), 507–531
  43. C. Cascante, J. M. Ortega, I. E. Verbitsky, “Nonlinear potentials and two weight trace inequalities for general dyadic and radial kernels”, Indiana Univ. Math. J., 53:3 (2004), 845–882

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Тюленев А.I.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).