Homologies of transitive digraphs and discrete spaces

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We prove that for transitive digraphs path homology, and therefore also Alexandroff homology, coincides with singular cubic homology. Also, discrete topological spaces are defined that are natural analogues of standard topological cubes. Using them, the singular cubic homology of discrete topological spaces is defined, and it is proved that these homology groups coincide with the Alexandroff homology groups.

About the authors

Yury Vladimirovich Muranov

University of Warmia and Mazury in Olsztyn

Email: ymuranov@mail.ru
Doctor of physico-mathematical sciences, Professor

Rolando Benitez Jimenez

National Autonomous University of Mexico, Institute of Mathematics

Author for correspondence.
Email: ymuranov@mail.ru

Candidate of physico-mathematical sciences

References

  1. A. Connes, “Non-commutative differential geometry”, Inst. Hautes Etudes Sci. Publ. Math., 62 (1985), 41–144
  2. A. Dimakis, F. Müller-Hoissen, “Discrete differential calculus: graphs, topologies, and gauge theory”, J. Math. Phys., 35:12 (1994), 6703–6735
  3. A. Dimakis, F. Müller-Hoissen, F. Vanderseypen, “Discrete differential manifolds and dynamics on networks”, J. Math. Phys., 36:7 (1995), 3771–3791
  4. A. Grigor'yan, Yong Lin, Yu. Muranov, Shing-Tung Yau, “Cohomology of digraphs and (undirected) graphs”, Asian J. Math., 19:5 (2015), 887–932
  5. G. Hochschild, “On the cohomology groups of an associative algebra”, Ann. of Math. (2), 46:1 (1945), 58–67
  6. M. Gerstenhaber, S. D. Schack, “Simplicial cohomology is Hochschild cohomology”, J. Pure Appl. Algebra, 30:2 (1983), 143–156
  7. A. Grigor'yan, Yu. Muranov, Shing-Tung Yau, “On a cohomology of digraphs and Hochschild cohomology”, J. Homotopy Relat. Struct., 11:2 (2016), 209–230
  8. A. Grigor'yan, Y. V. Muranov, Shing-Tung Yau, “Graphs associated with simplicial complexes”, Homology Homotopy Appl., 16:1 (2014), 295–311
  9. А. А. Григорьян, Йонг Лин, Ю. В. Муранов, Шинтан Яу, “Комплексы путей и их гомологии”, Фундамент. и прикл. матем., 21:5 (2016), 79–128
  10. A. Grigor'yan, Yong Lin, Yu. Muranov, Shing-Tung Yau, “Homotopy theory for digraphs”, Pure Appl. Math. Q., 10:4 (2014), 619–674
  11. A.A. Grigor'yan, R. Jimenez, Y. Muranov, Shing-Tung Yau, “On the path homology theory of digraphs and Eilenberg–Steenrod axioms”, Homology Homotopy Appl., 20:2 (2018), 179–205
  12. А. А. Григорьян, Ю. В. Муранов, Р. Хименес, “Гомологии орграфов”, Матем. заметки, 109:5 (2021), 705–722
  13. Ю. В. Муранов, “Гомологии Александрова и гомологии путей”, Матем. заметки, 112:1 (2022), 148–152
  14. P. Alexandroff, “Discrete Räume”, Матем. сб., 2(44):3 (1937), 501–519
  15. П. С. Александров, “О понятии пространства в топологии”, УМН, 2:1(17) (1947), 5–57
  16. J. W. Evans, F. Harary, M. S. Lynn, “On the computer enumeration of finite topologies”, Comm. ACM, 10:5 (1967), 295–297
  17. C. Marijuan, “Finite topologies and digraphs”, Proyecciones, 29:3 (2010), 291–307
  18. M. C. McCord, “Singular homology groups and homotopy groups of finite topological spaces”, Duke Math. J., 33:3 (1966), 465–474
  19. R. E. Stong, “Finite topological spaces”, Trans. Amer. Math. Soc., 123 (1966), 325–340
  20. M. L. Wachs, “Poset topology: tools and applications”, Geometric combinatorics, IAS/Park City Math. Ser., 13, Amer. Math. Soc., Providence, RI, 2007, 497–615
  21. J. A. Barmak, Algebraic topology on finite topological spaces and applications, Lecture Notes in Math., 2032, Springer, Berlin, 2011, xviii+170 pp.
  22. P. J Hilton, S. Wylie, Homology theory. An introduction to algebraic topology, Cambridge Univ. Press, New York, 1960, xv+484 pp.
  23. А. Хатчер, Алгебраическая топология, МЦНМО, М., 2011, 688 с.
  24. В. В. Прасолов, Элементы теории гомологий, МЦНМО, М., 2006, 448 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Muranov Y.V., Jimenez R.B.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).