‘Far interaction’ of small spectral perturbations of the Neumann boundary conditions for an elliptic system of differential equations in a three-dimensional domain
- Authors: Nazarov S.A.1
-
Affiliations:
- Institute of Problems of Mechanical Engineering, Russian Academy of Sciences
- Issue: Vol 214, No 1 (2023)
- Pages: 61-112
- Section: Articles
- URL: https://ogarev-online.ru/0368-8666/article/view/133501
- DOI: https://doi.org/10.4213/sm9733
- ID: 133501
Cite item
Abstract
A formally selfadjoint system of second-order differential equations is considered in a three-dimensional domain on small parts of whose boundary an analogue of Steklov spectral conditions is set, while the Neumann boundary conditions are set on the rest of the boundary. Under certain algebraic and geometric conditions an asymptotic expression for the eigenvalues of this problem is presented and a limiting problem is put together, which produces the leading asymptotic terms and involves systems of integro-differential equations in half-spaces, interconnected by means of certain integral characteristics of vector-valued eigenfunctions. One example of a concrete problem in mathematical physics describes surface waves in several ice holes made in the ice cover of a water basin, and the asymptotic formula for eigenfrequencies shows that the local wave processes interact independently of the distance between the holes. Another series of applied problems relates to elastic fixings of bodies along small pieces of their surfaces. Possible generalizations are discussed; a number of related open questions are stated. Bibliography: 41 titles.
About the authors
Sergei Aleksandrovich Nazarov
Institute of Problems of Mechanical Engineering, Russian Academy of Sciences
Email: srgnazarov@yahoo.co.uk
Doctor of physico-mathematical sciences, Professor
References
- О. А. Ладыженская, Краевые задачи математической физики, Наука, М., 1973, 407 с.
- Ж.-Л. Лионс, Э. Мадженес, Неоднородные граничные задачи и их приложения, Мир, М., 1971, 371 с.
- М. Ш. Бирман, М. З. Соломяк, Спектральная теория самосопряженных операторов в гильбертовом пространстве, Изд-во Ленингр. ун-та, Л., 1980, 264 с.
- J. Nečas, Les methodes directes en theorie des equations elliptiques, Masson et Cie, Paris; Academia, Ed., Prague, 1967, 351 pp.
- С. А. Назаров, “Самосопряженные эллиптические краевые задачи. Полиномиальное свойство и формально положительные операторы”, Проблемы матем. анализа, 16, Изд-во СПбГУ, СПб., 1997, 167–192
- C. А. Назаров, “Полиномиальное свойство самосопряженных эллиптических краевых задач и алгебраическое описание их атрибутов”, УМН, 54:5(329) (1999), 77–142
- Дж. Дж. Стокер, Волны на воде. Математическая теория и приложения, ИЛ, М., 1959, 617 с.
- N. Kuznetsov, V. Maz'ya, B. Vainberg, Linear water waves. A mathematical approach, Cambridge Univ. Press, Cambridge, 2002, xviii+513 pp.
- С. А. Назаров, Асимптотическая теория тонких пластин и стержней. Понижение размерности и интегральные оценки, Научная книга, Новосибирск, 2002, 408 с.
- С. Лангер, С. А. Назаров, М. Шпековиус-Нойгебауер, “Аффинные преобразования трехмерных анизотропных сред и явные формулы для фундаментальных матриц”, Прикладная механика и техническая физика, 47:2 (2006), 95–102
- D. Gomez, S. A. Nazarov, E. Perez, “Homogenization of Winkler–Steklov spectral conditions in three-dimensional linear elasticity”, Z. Angew. Math. Phys., 69:2 (2018), 35, 23 pp.
- C. А. Назаров, “Неравенства Корна для упругих сочленений массивных тел, тонких пластин и стержней”, УМН, 63:1(379) (2008), 37–110
- E. Perez, “On periodic Steklov type eigenvalue problems on half-bands and the spectral homogenization problem”, Discrete Contin. Dyn. Syst. Ser. B, 7:4 (2007), 859–883
- С. А. Назаров, “Асимптотика решения спектральной задачи Стеклова в области с затупленным пиком”, Матем. заметки, 86:4 (2009), 571–587
- G. Cardone, T. Durante, S. A. Nazarov, “Water-waves modes trapped in a canal by a near-surface rough body”, ZAMM Z. Angew. Math. Mech., 90:12 (2010), 983–1004
- С. А. Назаров, “Асимптотика собственных значений задачи Стеклова на сочленении областей различных предельных размерностей”, Ж. вычисл. матем. и матем. физ., 52:11 (2012), 2033–2049
- С. А. Назаров, “Асимптотические разложения собственных чисел задачи Стеклова в сингулярно возмущенных областях”, Алгебра и анализ, 26:2 (2014), 119–184
- S. Gryshchuk, M. Lanza de Cristoforis, “Simple eigenvalues for the Steklov problem in a domain with a small hole. A functional analytic approach”, Math. Methods Appl. Sci., 37:12 (2014), 1755–1771
- C. А. Назаров, “Моделирование сингулярно возмущенной спектральной задачи при помощи самосопряженных расширений операторов предельных задач”, Функц. анализ и его прил., 49:1 (2015), 31–48
- Y. Amirat, O. Bodart, G. A. Chechkin, A. L. Piatnitski, “Asymptotics of a spectral-sieve problem”, J. Math. Anal. Appl., 435:2 (2016), 1652–1671
- А. Г. Чечкина, “Усреднение спектральных задач с сингулярным возмущением условия Стеклова”, Изв. РАН. Сер. матем., 81:1 (2017), 203–240
- Р. Р. Гадыльшин, А. Л. Пятницкий, Г. А. Чечкин, “Об асимптотиках собственных значений краевой задачи в плоской области типа сита Стеклова”, Изв. РАН. Сер. матем., 82:6 (2018), 37–64
- S. A. Nazarov, J. Taskinen, ““Blinking eigenvalues” of the Steklov problem generate the continuous spectrum in a cuspidal domain”, J. Differential Equations, 269:4 (2020), 2774–2797
- M. Lanza de Cristoforis, “Multiple eigenvalues for the Steklov problem in a domain with a small hole. A functional analytic approach”, Asymptot. Anal., 121:3-4 (2021), 335–365
- V. Chiadò Piat, S. A. Nazarov, “Steklov spectral problems in a set with a thin toroidal hole”, Partial Differential Equations in Applied Mathematics, 1 (2020), 100007, 13 pp.
- В. Киадо Пиат, С. А. Назаров, “Смешанные краевые задачи в сингулярно возмущенных двумерных областях со спектральным условием Стеклова”, Проблемы матем. анализа, 106, Тамара Рожковская, Новосибирск, 2020, 91–124
- А. Г. Чечкина, “О поведении спектра возмущенной краевой задачи Стеклова со слабой сингулярностью”, Дифференц. уравнения, 57:10 (2021), 1407–1420
- D. Gomez, S. A. Nazarov, M.-E. Perez-Martinez, “Asymptotics for spectral problems with rapidly alternating boundary conditions on a strainer Winkler foundation”, J. Elasticity, 142:1 (2020), 89–120
- S. A. Nazarov, “Interaction of concentrated masses in a harmonically oscillating spatial body with Neumann boundary conditions”, RAIRO Model. Math. Anal. Numer., 27:6 (1993), 777–799
- C. А. Назаров, “Об одной задаче Санчес-Паленсия с краевыми условиями Неймана”, Изв. вузов. Матем., 1989, № 11, 60–66
- J. Cainzos, E. Perez, M. Vilasanchez, “Asymptotics for the eigenelements of the Neumann spectral problem with concentrated masses”, Indiana Univ. Math. J., 56:4 (2007), 1939–1987
- Д. Гомес, С. А. Назаров, М. Е. Перес, “Формальная асимптотика собственных частот колебаний упругого трехмерного тела с концентрированными массами”, Математические вопросы теории распространения волн. 36, Зап. науч. сем. ПОМИ, 342, ПОМИ, СПб., 2007, 31–76
- В. А. Кондратьев, “Краевые задачи для эллиптических уравнений в областях с коническими или угловыми точками”, Тр. ММО, 16, Изд-во Моск. ун-та, М., 1967, 209–292
- С. А. Назаров, Б. А. Пламеневский, Эллиптические задачи в областях с кусочно гладкой границей, Наука, М., 1991, 336 с.
- В. Г. Мазья, Б. А. Пламеневский, “О коэффициентах в асимптотике решений эллиптических краевых задач в области с коническими точками”, Math. Nachr., 76 (1977), 29–60
- В. Г. Мазья, Б. А. Пламеневский, “Оценки в $L_p$ и в классах Гельдера и принцип максимума Миранда–Агмона для решений эллиптических краевых задач в областях с особыми точками на границе”, Math. Nachr., 81:1 (1978), 25–82
- М. И. Вишик, Л. А. Люстерник, “Регулярное вырождение и пограничный слой для линейных дифференциальных уравнений с малым параметром”, УМН, 12:5(77) (1957), 3–122
- V. Maz'ya, S. Nazarov, B. Plamenevskij, Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, v. 1, Oper. Theory Adv. Appl., 111, Birkhäuser Verlag, Basel, 2000, xxiv+435 pp.
- Ю. Н. Работнов, Механика деформируемого твердого тела, 2-е изд., Наука, М., 1988, 712 с.
- Я. С. Уфлянд, Интегральные преобразования в задачах теории упругости, 2-е изд., доп., Наука, Л., 1967, 420 с.
- С. Г. Михлин, Вариационные методы в математической физике, 2-е изд., испр. и доп., Наука, М., 1970, 512 с.
Supplementary files

