On the cohomology rings of partially projective quaternionic Stiefel manifolds

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The quaternionic Stiefel manifold $V_{n,k}(\mathbb H)$ is the total space of a fibre bundle over the corresponding Grassmannian $G_{n,k}(\mathbb H)$. The group $\operatorname{Sp}(1)=S^3$ acts freely on the fibres of this bundle. The quotient space is called the quaternionic projective Stiefel manifold. Its real and complex analogues were actively studied earlier by a number of authors. A finite group acting freely on the three-dimensional sphere also acts freely and discretely on the fibres of the quaternionic Stiefel bundle. The corresponding quotient spaces are called partially projective Stiefel manifolds.The cohomology rings of partially projective quaternionic Stiefel manifolds with coefficients in $\mathbb Z_p$, where $p$ is prime, are calculated.Bibliography: 14 titles.

Sobre autores

Georgy Zhubanov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Fedor Popelenskii

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics; Moscow Center for Fundamental and Applied Mathematics

Candidate of physico-mathematical sciences, no status

Bibliografia

  1. A. Borel, “Sur la cohomologie des espaces fibres principaux et des espaces homogenes de groupes de Lie compacts”, Ann. of Math. (2), 57 (1953), 115–207
  2. S. Gitler, D. Handel, “The projective Stiefel manifolds. I”, Topology, 7 (1968), 39–46
  3. A. Borel, “Sur l'homologie et la cohomologie des groupes de Lie compacts connexes”, Amer. J. Math., 76:2 (1954), 273–342
  4. P. F. Baum, W. Browder, “The cohomology of quotients of classical groups”, Topology, 3:4 (1965), 305–336
  5. L. Smith, “Some remarks on projective Stiefel manifolds, immersions of projective spaces and spheres”, Proc. Amer. Math. Soc., 80:4 (1980), 663–669
  6. L. Astey, S. Gitler, E. Micha, G. Pastor, “Cohomology of complex projective Stiefel manifolds”, Canad. J. Math., 51:5 (1999), 897–914
  7. S. S. Gondhali, Vector fields on certain quotients of the complex Stiefel manifolds, Ph.D. thesis, Tata Inst. Fund. Res., Mumbai, 2012, 47 pp.
  8. W. Threlfall, H. Seifert, “Topologische Untersuchung der Diskontinuitätsbereiche endlicher Bewegungsgruppen des dreidimensionalen sphärischen Raumes (Schluss)”, Math. Ann., 107:1 (1933), 543–586
  9. H. Hopf, “Zum Clifford–Kleinschen Raumproblem”, Math. Ann., 95:1 (1926), 313–339
  10. W. S. Massey, F. P. Peterson, “The cohomology structure of certain fibre spaces. I”, Topology, 4 (1965), 47–65
  11. P. Orlik, Seifert manifolds, Lecture Notes in Math., 291, Springer-Verlag, Berlin–New York, 1972, viii+155 pp.
  12. J. Milnor, “Groups which act on $S^n$ without fixed points”, Amer. J. Math., 79:3 (1957), 623–630
  13. S. Tomoda, P. Zvengrowski, “Remarks on the cohomology of finite fundamental groups of 3-manifolds”, The Zieschang Gedenkschrift, Geom. Topol. Monogr., 14, Geom. Topol. Publ., Coventry, 2008, 519–556
  14. A. R. Shastri, P. Zvengrowski, “Type of 3-manifolds and addition of relativistic kinks”, Rev. Math. Phys., 3:4 (1991), 467–478

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Zhubanov G.E., Popelenskii F.Y., 2022

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).