A hyperbolicity criterion for a class of diffeomorphisms of an infinite-dimensional torus

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

On an infinite-dimensional torus $\mathbb{T}^{\infty} = E/2\pi\mathbb{Z}^{\infty}$, where $E$ is an infinite-dimensional real Banach space and $\mathbb{Z}^{\infty}$ is an abstract integer lattice, a special class of diffeomorphisms $\operatorname{Diff}(\mathbb{T}^{\infty})$ is considered. It consists of the maps $G\colon \mathbb{T}^{\infty}\to\mathbb{T}^{\infty}$ equal to sums of invertible bounded linear operators preserving $\mathbb{Z}^{\infty}$ and $C^1$-smooth periodic additives. Necessary and sufficient conditions ensuring that such maps are hyperbolic (that is, are Anosov diffeomorphisms) are obtained. Bibliography: 15 titles.

About the authors

Sergey Dmitrievich Glyzin

Centre of Integrable Systems, P.G. Demidov Yaroslavl State University

Email: glyzin.s@gmail.com
Doctor of physico-mathematical sciences, Professor

Andrei Yurevich Kolesov

Centre of Integrable Systems, P.G. Demidov Yaroslavl State University

Email: kolesov@uniyar.ac.ru
Doctor of physico-mathematical sciences, Professor

References

  1. Д. В. Аносов, С. Х. Арансон, В. З. Гринес, Р. В. Плыкин, Е. А. Сатаев, А. В. Сафонов, В. В. Солодов, А. Н. Старков, А. М. Степин, С. В. Шлячков, “Динамические системы с гиперболическим поведением”, Динамические системы – 9, Итоги науки и техн. Сер. Соврем. пробл. мат. Фундам. направления, 66, ВИНИТИ, М., 1991, 5–242
  2. А. Б. Каток, Б. Хасселблат, Введение в современную теорию динамических систем, Факториал, М., 1999, 768 с.
  3. А. Б. Каток, Б. Хасселблат, Введение в теорию динамических систем с обзором последних достижений, МЦНМО, М., 2005, 464 с.
  4. H. M. Hastings, “On expansive homeomorphisms of the infinite torus”, The structure of attractors in dynamical systems (North Dakota State Univ., Fargo, ND, 1977), Lecture Notes in Math., 668, Springer, Berlin, 1978, 142–149
  5. С. Д. Глызин, А. Ю. Колесов, Н. Х. Розов, “Об одном классе структурно устойчивых эндоморфизмов на бесконечномерном торе”, Дифференц. уравнения, 56:10 (2020), 1412–1416
  6. Д. В. Аносов, “Геодезические потоки на замкнутых римановых многообразиях отрицательной кривизны”, Тр. МИАН СССР, 90, 1967, 3–210
  7. А. Ю. Колесов, Н. Х. Розов, В. А. Садовничий, “Об одном достаточном условии гиперболичности отображений тора”, Дифференц. уравнения, 53:4 (2017), 465–486
  8. А. Ю. Колесов, Н. Х. Розов, В. А. Садовничий, “О гиперболичности эндоморфизмов тора”, Матем. заметки, 105:2 (2019), 251–268
  9. С. Д. Глызин, А. Ю. Колесов, Н. Х. Розов, “О некоторых достаточных условиях гиперболичности”, Труды МИАН, 308, Дифференциальные уравнения и динамические системы (2020), 116–134
  10. С. Д. Глызин, А. Ю. Колесов, Н. Х. Розов, “Соленоидальные аттракторы диффеоморфизмов кольцевых множеств”, УМН, 75:2(452) (2020), 3–60
  11. С. Ю. Пилюгин, Пространства динамических систем, НИЦ "Регулярная и хаотическая динамика", Ин-т компьютерных исследований, М.–Ижевск, 2008, 272 с.
  12. Л. В. Канторович, Г. П. Акилов, Функциональный анализ, 2-е изд., Наука, М., 1977, 742 с.
  13. S. Banach, S. Mazur, “Über mehrdeutige stetige Abbildungen”, Studia Math., 5 (1934), 174–178
  14. R. Plastock, “Homeomorphisms between Banach spaces”, Trans. Amer. Math. Soc., 200 (1974), 169–183
  15. J. D. Farmer, E. Ott, J. A. Yorke, “The dimension of chaotic attractors”, Phys. D, 7:1-3 (1983), 153–180

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Glyzin S.D., Kolesov A.Y.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).