On $DA$-endomorphisms of the two-dimensional torus

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

It is proved that in each homotopy class of continuous mappings of the two-dimensional torus to itself that induce a hyperbolic action on the fundamental group, as long as it is free of expanding mappings, there exists an $A$-endomorphism $f$ whose nonwandering set consists of an attracting hyperbolic sink and a nontrivial one-dimensional collapsing repeller, which is a one-dimensional orientable lamination, locally homeomorphic to the direct product of a Cantor set and a line segment. Moreover, the unstable $Df$-invariant subbundle of the tangent space to the repeller has the property of uniqueness. Bibliography: 23 titles.

About the authors

Vyacheslav Zigmuntovich Grines

National Research University – Higher School of Economics in Nizhny Novgorod

Doctor of physico-mathematical sciences, Professor

Evgenii Viktorovich Zhuzhoma

National Research University – Higher School of Economics in Nizhny Novgorod

Email: zhuzhoma@mail.ru
Doctor of physico-mathematical sciences, Professor

Evgeny Dmitrievich Kurenkov

National Research University – Higher School of Economics in Nizhny Novgorod

Email: ekurenkov@hse.ru

References

  1. Д. В. Аносов, “Гладкие динамические системы. Гл. 1. Исходные понятия”, Динамические системы – 1, Итоги науки и техн. Сер. Соврем. пробл. мат. Фундам. направления, 1, ВИНИТИ, М., 1985, 156–178
  2. Д. В. Аносов, Е. В. Жужома, “Нелокальное асимптотическое поведение кривых и слоев ламинаций на универсальных накрывающих”, Тр. МИАН, 249, Наука, М., 2005, 3–239
  3. S. Kh. Aranson, G. R. Belitsky, E. V. Zhuzhoma, Introduction to the qualitative theory of dynamical systems on surfaces, Transl. Math. Monogr., 153, Amer. Math. Soc., Providence, RI, 1996, xiv+325 pp.
  4. С. Х. Арансон, В. З. Гринес, “Топологическая классификация каскадов на замкнутых двумерных многообразиях”, УМН, 45:1(271) (1990), 3–32
  5. В. З. Гринес, “О топологической сопряженности диффеоморфизмов двумерного многообразия на одномерных ориентируемых базисных множествах I”, Тр. ММО, 32, Изд-во Моск. ун-та, М., 1975, 35–60
  6. В. З. Гринес, “О топологической сопряженности диффеоморфизмов двумерного многообразия на одномерных ориентируемых базисных множествах II”, Тр. ММО, 34, Изд-во Моск. ун-та, М., 1977, 243–252
  7. В. З. Гринес, Х. Х. Калай, “Диффеоморфизмы двумерных многообразий с просторно расположенными базисными множествами”, УМН, 40:1(241) (1985), 189–190
  8. V. Z. Grines, “Topological classification of one-dimensional attractors and repellers of $A$-diffeomorphisms of surfaces by means of automorphisms of fundamental groups of supports”, J. Math. Sci. (N.Y.), 95:5 (1999), 2523–2545
  9. В. З. Гринес, Е. В. Жужома, Е. Д. Куренков, “Хирургическая операция для эндоморфизма Аносова двумерного тора не дает растягивающийся аттрактор”, Динамические системы, 8(36):3 (2018), 235–244
  10. В. З. Гринес, О. В. Починка, Введение в топологическую классификацию диффеоморфизмов на многообразиях размерности два и три, НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2011, 424 с.
  11. А. Ю. Жиров, “Гиперболические аттракторы диффеоморфизмов ориентируемых поверхностей”, Матем. сб., 185:6 (1994), 3–50
  12. Е. Д. Куренков, “О существовании эндоморфизма двумерного тора со строго инвариантным сжимающимся репеллером”, Журнал СВМО, 19:1 (2017), 60–66
  13. А. Майер, “О траекториях на ориентируемых поверхностях”, Матем. сб., 12(54):1 (1943), 71–84
  14. Р. В. Плыкин, “О геометрии гиперболических аттракторов гладких каскадов”, УМН, 39:6(240) (1984), 75–113
  15. А. Пуанкаре, О кривых, определяемых дифференциальными уравнениями, ГИТТЛ, М.–Л., 1947, 392 с.
  16. W. Hurewicz, “Über den sogenannten Produktsatz der Dimensionstheorie”, Math. Ann., 102:1 (1930), 305–312
  17. G. Ikegami, “Nondensity of $Omega$-stable endomorphisms and rough $Omega$-stabilities for endomorphisms”, Dynamical systems (Santiago, 1990), Pitman Res. Notes Math. Ser., 285, Longman Sci. Tech., Harlow, 1993, 52–91
  18. А. Б. Каток, Б. Хасселблат, Введение в современную теорию динамических систем, Факториал, М., 1999, 768 с.
  19. F. Przytycki, “Anosov endomorphisms”, Studia Math., 58:3 (1976), 249–285
  20. C. Robinson, Dynamical systems. Stability, symbolic dynamics, and chaos, Stud. Adv. Math., 2nd corr. ed., CRC Press, Boca Raton, FL, 1999, xiv+506 pp.
  21. Л. П. Шильников, “Об одной задаче Пуанкаре–Биркгофа”, Матем. сб., 74(116):3 (1967), 378–397
  22. С. Смейл, “Дифференцируемые динамические системы”, УМН, 25:1(151) (1970), 113–185
  23. M. Shub, “Endomorphisms of compact differentiable manifolds”, Amer. J. Math., 91:1 (1969), 175–199

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Grines V.Z., Zhuzhoma E.V., Kurenkov E.D.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).