Проблема Ферма–Штейнера в пространстве компактных подмножеств $\mathbb R^m$ с метрикой Хаусдорфа

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Проблема Ферма–Штейнера состоит в поиске всех точек метрического пространства $X$, в которых достигает минимума сумма расстояний до фиксированных точек $A_1,…,A_n$ из $X$. Эта задача изучается в метрическом пространстве $\mathscr{H}(\mathbb R^m)$ всех непустых компактных подмножеств евклидова пространства, где $A_i$ – его попарно не пересекающиеся конечные подмножества. Множество решений (так называемых компактов Штейнера) разбивается на классы, различающиеся наборами расстояний до точек $A_i$. В каждом классе существуют наибольший и минимальные по включению элементы (соответственно максимальный и минимальные компакты Штейнера). В работе получен критерий того, когда компакт является минимальным компактом Штейнера в заданном классе, приведен алгоритм построения таких компактов, получена точная оценка на число точек в них. Также доказан ряд геометрических свойств минимальных и максимальных компактов. Результаты данного исследования могут существенно облегчить решение конкретных задач, что продемонстрировано на известном примере симметричного множества $\{A_1,A_2,A_3\}\subset \mathbb R^2$, для которого все компакты Штейнера несимметричны. Разбор этого случая удалось значительно упростить благодаря развитой в работе технике.Библиография: 16 названий.

Об авторах

Арсен Хачатурович Галстян

Московский государственный университет имени М. В. Ломоносова, механико-математический факультет; Московский центр фундаментальной и прикладной математики

без ученой степени, без звания

Александр Олегович Иванов

Московский государственный университет имени М. В. Ломоносова, механико-математический факультет; Московский центр фундаментальной и прикладной математики; Московский государственный технический университет имени Н. Э. Баумана

Email: aoiva@mech.math.msu.su
доктор физико-математических наук, профессор

Алексей Августинович Тужилин

Московский государственный университет имени М. В. Ломоносова, механико-математический факультет; Московский центр фундаментальной и прикладной математики

Email: tuz@mech.math.msu.su
доктор физико-математических наук, профессор

Список литературы

  1. A. O. Ivanov, A. A. Tuzhilin, Branching solutions to one-dimensional variational problems, World Sci. Publ., River Edge, NJ, 2001, xxii+342 pp.
  2. D. Cieslik, Steiner minimal trees, Nonconvex Optim. Appl., 23, Kluwer Acad. Publ., Dordrecht, 1998, xii+319 pp.
  3. A. O. Ivanov, A. A. Tuzhilin, “Minimal networks: a review”, Advances in dynamical systems and control, Stud. Syst. Decis. Control, 69, Springer, [Cham], 2016, 43–80
  4. V. Jarnik, M. Kössler, “O minimalnich grafech, obsahujicich $n$ danych bodů [On minimal graphs containing $n$ given points]”, Časopis Pěst. Mat. Fys., 63:8 (1934), 223–235
  5. Р. Курант, Г. Роббинс, Что такое математика? Элементарный очерк идей и методов, 3-е изд., испр. и доп., МЦНМО, М., 2001, 568 с.
  6. Z. Drezner, K. Klamroth, A. Schöbel, G. O. Wesolowsky, “The Weber problem”, Facility location: applications and theory, Springer, Berlin, 2002, 1–36
  7. A. Ivanov, A. Tropin, A. Tuzhilin, “Fermat–Steiner problem in the metric space of compact sets endowed with Hausdorff distance”, J. Geom., 108:2 (2017), 575–590
  8. S. Schlicker, The geometry of the Hausdorff metric, GVSU REU 2008, Grand Valley State Univ., Allendale, MI, 2008, 11 pp.
  9. Д. Ю. Бураго, Ю. Д. Бураго, С. В. Иванов, Курс метрической геометрии, Ин-т компьютерных исследований, М.–Ижевск, 2004, 512 с.
  10. C. C. Blackburn, K. Lund, S. Schlicker, P. Sigmon, A. Zupan, An introduction to the geometry of $mathscr{H}(mathbb R^n)$, GVSU REU 2007, Grand Valley State Univ., Allendale, MI, 2007
  11. F. Memoli, “On the use of Gromov–Hausdorff distances for shape comparison”, Eurographics symposium on point based graphics, The Eurographics Association, Prague, 2007, 81–90
  12. F. Memoli, “Some properties of Gromov–Hausdorff distances”, Discrete Comput. Geom., 48:2 (2012), 416–440
  13. A. O. Ivanov, A. A. Tuzhilin, “Isometry group of Gromov–Hausdorff space”, Mat. Vesnik, 71:1-2 (2019), 123–154
  14. В. А. Емеличев, О. И. Мельников, В. И. Сарванов, Р. И. Тышкевич, Лекции по теории графов, Наука, М., 1990, 384 с.
  15. А. О. Иванов, А. А. Тужилин, Геометрия расстояний Хаусдорфа и Громова–Хаусдорфа: случай компактов, Изд-во Попечительского совета мех.-матем. ф-та МГУ, М., 2017, 111 с.
  16. А. М. Тропин, Минимальные деревья Штейнера в пространстве с метрикой Хаусдорфа, Дипломная работа, Мех.-матем. ф-т МГУ, М., 2014

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Галстян А.Х., Иванов А.О., Тужилин А.А., 2021

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).