Необходимые и достаточные условия продолжимости функции до функции Шура

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В статье сформулирован и доказан критерий возможности продолжения функции, заданной своими значениями (с учетом кратностей) в некоторой последовательности точек круга $\mathbb D=\{ |z|<1\}$, до голоморфной в $\mathbb D$ функции, модуль которой не превосходит единицы. В случае, когда функция задается значениями своих производных в точке $z=0$, полученный критерий совпадает с известным критерием Шура.Библиография: 16 названий.

Об авторах

Виктор Иванович Буслаев

Математический институт им. В.А. Стеклова Российской академии наук

Email: buslaev@mi-ras.ru
доктор физико-математических наук, без звания

Список литературы

  1. J. Schur, “Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. I”, J. Reine Angew. Math., 1917:147 (1917), 205–232
  2. L. Baratchart, S. Kupin, V. Lunot, M. Olivi, “Multipoint Schur algorithm and orthogonal rational functions, I: Convergence properties”, J. Anal. Math., 114 (2011), 207–253
  3. В. И. Буслаев, “О критерии Шура для формальных степенных рядов”, Матем. сб., 210:11 (2019), 58–75
  4. У. Джоунс, В. Трон, Непрерывные дроби. Аналитическая теория и приложения, Мир, М., 1985, 416 с.
  5. В. И. Буслаев, “О ганкелевых определителях функций, заданных своим разложением в $P$-дробь”, Укр. матем. журн., 62:3 (2010), 315–326
  6. В. И. Буслаев, “Об особых точках мероморфных функций, задаваемых непрерывными дробями”, Матем. заметки, 103:4 (2018), 490–502
  7. G. Polya, “Beitrag zur Verallgemeinerung des Verzerrungssatzes auf mehrfach zusammenhängende Gebiete. III”, Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Kl., 1929 (1929), 55–62
  8. С. П. Суетин, “О некотором аналоге теоремы Пойа для многозначных аналитических функций с конечным числом точек ветвления”, Матем. заметки, 101:5 (2017), 779–791
  9. В. И. Буслаев, “О сходимости непрерывных T-дробей”, Аналитические и геометрические вопросы комплексного анализа, Сборник статей. К 70-летию со дня рождения академика Анатолия Георгиевича Витушкина, Тр. МИАН, 235, Наука, МАИК «Наука/Интерпериодика», М., 2001, 36–51
  10. В. И. Буслаев, “Аналог теоремы Полиа для кусочно голоморфных функций”, Матем. сб., 206:12 (2015), 55–69
  11. В. И. Буслаев, “Емкость компакта в поле логарифмического потенциала”, Современные проблемы математики, механики и математической физики, Сборник статей, Тр. МИАН, 290, МАИК «Наука/Интерпериодика», М., 2015, 254–271
  12. В. И. Буслаев, “Емкость рационального прообраза компакта”, Матем. заметки, 100:6 (2016), 790–799
  13. В. И. Буслаев, “О непрерывных дробях с предельно периодическими коэффициентами”, Матем. сб., 209:2 (2018), 47–65
  14. В. И. Буслаев, “Аналог теоремы Гончара для $m$-точечного варианта гипотезы Лейтона”, Функциональные пространства, теория приближений, смежные разделы математического анализа, Сборник статей. К 110-летию со дня рождения академика Сергея Михайловича Никольского, Тр. МИАН, 293, МАИК «Наука/Интерпериодика», М., 2016, 133–145
  15. В. И. Буслаев, “О теореме Ван Флека для предельно периодических непрерывных дробей общего вида”, Комплексный анализ и его приложения, Сборник статей. К 100-летию со дня рождения Бориса Владимировича Шабата, 85-летию со дня рождения Анатолия Георгиевича Витушкина и 85-летию со дня рождения Андрея Александровича Гончара, Тр. МИАН, 298, МАИК «Наука/Интерпериодика», М., 2017, 75–100
  16. В. И. Буслаев, “О сходимости предельно периодической непрерывной дроби Шура”, Матем. заметки, 107:5 (2020), 643–656

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Буслаев В.И., 2023

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).