Kripke semantics for the logic of problems and propositions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this paper we study the propositional fragment $\mathrm{HC}$ of the joint logic of problems and propositions introduced by Melikhov. We provide Kripke semantics for this logic and show that $\mathrm{HC}$ is complete with respect to those models and has the finite model property. We consider examples of the use of $\mathrm{HC}$-models usage. In particular, we prove that $\mathrm{HC}$ is a conservative extension of the logic $\mathrm{H4}$. We also show that the logic $\mathrm{HC}$ is complete with respect to Kripke frames with sets of audit worlds introduced by Artemov and Protopopescu (who called them audit set models). Bibliography: 31 titles.

About the authors

Anastasiya Aleksandrovna Onoprienko

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Email: ansidiana@yandex.ru
without scientific degree, no status

References

  1. S. A. Melikhov, A Galois connection between classical and intuitionistic logics. I: Syntax, 2013–2017
  2. S. A. Melikhov, A Galois connection between classical and intuitionistic logics. II: Semantics, 2015–2018
  3. А. Н. Колмогоров, Избранные труды. Математика и механика, Наука, М., 1985, 470 с.
  4. А. Н. Колмогоров, “О принципе tertium non datur”, Матем. сб., 32 (1925), 646–667
  5. А. Гейтинг, Интуиционизм. Введение, Мир, М., 1965, 200 с.
  6. S. A. Melikhov, Mathematical semantics of intuitionistic logic, 2015–2017
  7. A. S. Troelstra, “Aspects of constructive mathematics”, Handbook of mathematical logic, Stud. Logic Found. Math., 90, North-Holland, Amsterdam, 1977, 973–1052
  8. A. S. Troelstra, H. Schwichtenberg, Basic proof theory, Cambridge Tracts Theoret. Comput. Sci., 43, Cambridge Univ. Press, Cambridge, 1996, xii+343 pp.
  9. G. Kreisel, “Perspectives in the philosophy of pure mathematics”, Logic, methodology and philosophy of science (Bucharest, 1971), v. IV, Stud. Logic Found. Math., 74, North-Holland, Amsterdam, 1973, 255–277
  10. P. Martin-Löf, Intuitionistic type theory, Notes by G. Sambin, Stud. Proof Theory Lecture Notes, 1, Bibliopolis, Naples, 1984, iv+91 pp.
  11. С. К. Клини, Введение в метаматематику, ИЛ, М., 1957, 526 с.
  12. S. N. Artemov, “Explicit provability and constructive semantics”, Bull. Symbolic Logic, 7:1 (2001), 1–36
  13. С. Н. Артeмов, “Подход Колмогорова и Гeделя к интуиционистской логике и работы последнего десятилетия в этом направлении”, УМН, 59:2(356) (2004), 9–36
  14. K. Gödel, “Eine Interpretation des intuitionistischen Aussagenkalküls”, Ergebnisse math. Kolloquium Wien, 4 (1933), 39–40
  15. J.-Y. Girard, “Linear logic”, Theoret. Comput. Sci., 50:1 (1987), 1–101
  16. J.-Y. Girard, “On the unity of logic”, Ann. Pure Appl. Logic, 59:3 (1993), 201–217
  17. G. Japaridze, On resources and tasks, 2013
  18. G. Japaridze, “The logic of tasks”, Ann. Pure Appl. Logic, 117:1-3 (2002), 261–293
  19. G. Japaridze, “Intuitionistic computability logic”, Acta Cybernet., 18:1 (2007), 77–113
  20. G. Japaridze, “The intuitionistic fragment of computability logic at the propositional level”, Ann. Pure Appl. Logic, 147:3 (2007), 187–227
  21. Chuck Liang, D. Miller, “Kripke semantics and proof systems for combining intuitionistic logic and classical logic”, Ann. Pure Appl. Logic, 164:2 (2013), 86–111
  22. Chuck Liang, D. Miller, “Unifying classical and intuitionistic logics for computational control”, 2013 28th annual ACM/IEEE symposium on logic in computer science (LICS 2013), IEEE Computer Soc., Los Alamitos, CA, 2013, 283–292
  23. M. Bilkova, G. Greco, A. Palmigiano, A. Tzimoulis, N. Wijnberg, “The logic of resources and capabilities”, Rev. Symb. Log., 11:2 (2018), 371–410
  24. S. Artemov, T. Protopopescu, Intuitionistic epistemic logic, 2014
  25. K. Gödel, “Lecture at Zilsel's”, Collected works, v. III, Clarendon Press, Oxford Univ. Press, New York, 1995, 86–113
  26. Е. Расeва, Р. Сикорский, Математика метаматематики, Наука, М., 1972, 591 с.
  27. В. Е. Плиско, В. Х. Хаханян, Интуиционистская логика, МГУ, мех.-матем. ф-т, М., 2009, 159 с.
  28. Н. К. Верещагин, А. Шень, Лекции по математической логике и теории алгоритмов, Часть 2. Языки и исчисления, 4-е изд., испр., МЦНМО, М., 2012, 240 с.
  29. T. Protopopescu, “Intuitionistic epistemology and modal logics of verification”, Logics, rationality and interaction (LORI 2015), Lecture Notes in Comput. Sci., 9394, Springer, Heidelberg, 2015, 295–307
  30. S. Artemov, T. Protopopescu, “Intuitionistic epistemic logic”, Rev. Symb. Log., 9:2 (2016), 266–298
  31. A. Chagrov, M. Zakharyaschev, Modal logic, Oxford Logic Guides, 35, Oxford Univ. Press, New York, 1997, xvi+605 pp.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Onoprienko A.A.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).