Commuting homogeneous locally nilpotent derivations

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Let $X$ be an affine algebraic variety endowed with an action of complexity one of an algebraic torus $\mathbb T$. It is well known that homogeneous locally nilpotent derivations on the algebra of regular functions $\mathbb K[X]$ can be described in terms of proper polyhedral divisors corresponding to the $\mathbb T$-variety $X$. We prove that homogeneous locally nilpotent derivations commute if and only if a certain combinatorial criterion holds. These results are used to describe actions of unipotent groups of dimension two on affine $\mathbb T$-varieties.Bibliography: 10 titles.

About the authors

Dmitry Aleksandrovich Matveev

Faculty of Computer Science, National Research University "Higher School of Economics"

without scientific degree, no status

References

  1. K. Altmann, J. Hausen, “Polyhedral divisors and algebraic torus action”, Math. Ann., 334:3 (2006), 557–607
  2. I. Arzhantsev, A. Liendo, “Polyhedral divisors and $operatorname{SL}_2$-actions on affine $mathbb{T}$-varieties”, Michigan Math. J., 61:4 (2012), 731–762
  3. D. A. Cox, J. B. Little, H. K. Schenck, Toric varieties, Grad. Stud. Math., 124, Amer. Math. Soc., Providence, RI, 2011, xxiv+841 pp.
  4. G. Freudenburg, Algebraic theory of locally nilpotent derivations, Encyclopaedia Math. Sci., 136, Invariant Theory Algebr. Transform. Groups, VII, Springer-Verlag, Berlin, 2006, xii+261 pp.
  5. W. Fulton, Introduction to toric varieties, The W. H. Roever lectures in geometry, Ann. of Math. Stud., 131, Princeton Univ. Press, Princeton, NJ, 1993, xii+157 pp.
  6. A. Liendo, “$mathbb{G}_{mathrm{a}}$-actions of fiber type on affine $mathbb{T}$-varieties”, J. Algebra, 324:12 (2010), 3653–3665
  7. A. Liendo, “Affine $mathbb{T}$-varieties of complexity one and locally nilpotent derivations”, Transform. Group, 15:2 (2010), 389–425
  8. E. Romaskevich, “Sums and commutators of homogeneous locally nilpotent derivations of fiber type”, J. Pure Appl. Algebra, 218:3 (2014), 448–455
  9. Э. Б. Винберг, В. Л. Попов, “Теория инвариантов”, Алгебраическая геометрия – 4, Итоги науки и техн. Сер. Соврем. пробл. матем. Фундам. направления, 55, ВИНИТИ, М., 1989, 137–309
  10. Р. Хартсхорн, Алгебраическая геометрия, Мир, М., 1981, 600 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Matveev D.A.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).