Application of a digital micromirror device in diffractive optical neural networks: space-time characteristics and limitations
- Authors: Ovchinnikov A.S.1, Volkov A.A.1, Shifrina A.V.1, Petrova E.K.1, Nebavskiy V.A.1, Starikov R.S.1
-
Affiliations:
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
- Issue: Vol 74, No 6 (2025)
- Pages: 93-101
- Section: OPTOPHYSICAL MEASUREMENTS
- URL: https://ogarev-online.ru/0368-1025/article/view/380358
- ID: 380358
Cite item
Abstract
About the authors
A. S. Ovchinnikov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Email: pik.nik19@mail.ru
ORCID iD: 0009-0001-3678-5722
A. A. Volkov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Email: mr.a.a.volkov@gmail.com
ORCID iD: 0009-0008-4213-9373
A. V. Shifrina
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Email: avshifrina@gmail.com
ORCID iD: 0000-0001-7816-5989
E. K. Petrova
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Email: EKPetrova@mephi.ru
ORCID iD: 0000-0002-6764-7664
V. A. Nebavskiy
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Email: nozaler@mail.ru
ORCID iD: 0000-0003-3515-5822
R. S. Starikov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Email: rstarikov@mail.ru
ORCID iD: 0000-0002-7369-1565
References
Lecun Y., Bottou L., Bengio Y., Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(5), 2278–2324 (1998). https://doi.org/10.1109/5.726791 Lu Z., Sreekumar G., Goodman E., Banzhaf W., Deb K., Boddeti V. N. Neural architecture transfer. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(9), 2971–2989 (2021). https://doi.org/10.1109/TPAMI.2021.3052758 Ruiz L., Gama F., Ribeiro A. Graph neural networks: architectures, stability and transferability. Proceedings of the IEEE, 109(5), 660–682 (2021). https://doi.org/10.1109/JPROC.2021.3055400 Ahmed S., Dera D., Hassan S., Bouaynaya N., Rasool G. Failure detection in deep neural networks for medical imaging. Frontiers in Medical Technology, 4, 919046 (2022). https://doi.org/10.3389/fmedt.2022.919046 Svistunov A. S., Rymov D. A., Starikov R. S., Cheremkhin P. A. HoloForkNet: digital hologram reconstruction via multibranch neural network. Applied Sciences, 13(10), 6125 (2023). https://doi.org/10.3390/app13106125 ; https://elibrary.ru/hmhhws Borylo P., Biernacka E., Domzal J., Kądziołka B., Kantor M., Rusek K., Skala M., Wajda K., Wójcik R., Zabek W. Neural networks in selected aspects of communications and networking. IEEE Access, 12, 132856–132890 (2024). https://doi.org/10.1109/ACCESS.2024.3404866 Poyser M., Breckon T. Neural architecture search: a contemporary literature review for computer vision applications. Pattern Recognition, 147, 110052 (2023). https://doi.org/10.1016/j.patcog.2023.110052 Rymov D. A., Svistunov A. S., Starikov R. S., Shifrina A. V., Rodin V. G., Evtikhiev N. N., Cheremkhin P. A. 3D-CGH-Net: customizable 3D-hologram generation via deep learning. Optics and Lasers in Engineering, 184, 108645 (2025). https://doi.org/10.1016/j.optlaseng.2024.108645 ; https://elibrary.ru/judnpo Collobert R., Weston J. A unifi ed architecture for natural language processing: deep neural networks with multitask learning. Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, July 5–9, pp. 160–167 (2008). https://doi.org/10.1145/1390156.1390177 Galke L., Ram Y., Raviv L. Deep neural networks and humans both benefi t from compositional language structure. Nature Communications, 15, 10816 (2024). https://doi.org/10.1038/s41467-024-55158-1 Dennard R.H., Gaensslen F. H., Yu H.-N., Rideovt V., Bassous E., LeBlanc A. R. Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE Solid-State Circuits Society Newsletter, 12(1), 38–50 (2007). https://doi.org/10.1109/N-SSC.2007.4785543 Zhang D., Tan Z. A review of optical neural networks. Applied Sciences, 12, 5338 (2022). https://doi.org/10.3390/app12115338 Yang D., Lei Z., Li L., Shen W., Li H., Gui C., Song Y. High optical storage density using three-dimensional hybrid nanostructures based on machine learning. Optics and Lasers in Engineering, 161, 107347 (2022). https://doi.org/10.1016/j.optlaseng.2022.107347 Hamerly R., Bernstein L., Sludds A., Soljačić M., Englund D. Large-scale optical neural networks based on photoelectric multiplication. Physical Review X, 9, 021032 (2019). https://doi.org/10.1103/PhysRevX.9.021032 Mengu D., Luo Y., Rivenson Y., Ozcan A. Analysis of diffractive optical neural networks and their integration with electronic neural networks. IEEE Journal of Selected Topics in Quantum Electronics, 26, 1–14 (2020). https://doi.org/10.1109/JSTQE.2019.2921376 Xu R., Lv P., Xu F., Shi Y. A survey of approaches for implementing optical neural networks. Optics & Laser Technology, 136, 106787 (2021). https://doi.org/10.1016/j.optlastec.2020.106787 Song M., Li R., Wang J. Only frequency domain diffractive deep neural networks. Applied Optics, 62, 1082–1087 (2023). https://doi.org/10.1364/AO.480640 Wu K., Liu Y., Gao H., Tao J., Xiong W., Li X. Effi cient design optimization for diffractive deep neural networks. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 44(3), 1199–1203 (2025). https://doi.org/10.1109/TCAD.2024.3432632 Li B., Zhu Y., Fei J., Zheng R., Gu M., Jian L. Multi-functional broadband diffractive neural network with a single spatial light modulator. APL Photonics, 10, 016115 (2025). https://doi.org/10.1063/5.0245832 Zheng M., Liu W., Shi L., Zi J. Diffractive neural networks with improved expressive power for grayscale image classifi cation. Photonics Research, 12, 1159–1166 (2024) https://doi.org/10.1364/PRJ.513845 Миниханов Т. З., Злоказов Е. Ю., Стариков Р. С., Черёмхин П. А. Временна́ я динамика модуляции фазы жидкокристаллического пространственно-временного модулятора света. Измерительная техника, (12), 35–39 (2023) https://doi.org/10.32446/0368-1025it.2023-12-35-39 ; https://elibrary.ru/spyvls Hu Z., Miscuglio M., Li S., George J., Gupta P., Sorger V. J. Electro-optical hybrid Fourier neural network with amplitudeonly modulation. In Frontiers in Optics / Laser Science, B. Lee, C. Mazzali, K. Corwin, and R. Jason Jones, eds., OSA Technical Digest, FM7D.3. Optica Publishing Group (2020). https://doi.org/10.1364/FIO.2020.FM7D.3 Кирий С. А., Свистунов А. С., Рымов Д. А., Стариков Р. С., Шифрина А. В., Черёмхин П. А. Восстановление изображений объектов: метод реконструкции с использованием цифровых внеосевых голограмм и генеративно-состязательнойнейронной сети. Измерительная техника, 73(4), 23–31 (2024). https://doi.org/10.32446/0368-1025it.2024-4-23-31 ; https://elibrary.ru/potyoh Turtaev S., Leite I. T., Mitchell K. J., Padgett M. J., Phillips D. B., Čižmár T. Exploiting digital micromirror device for holographic micro-endoscopy. Proceedings of SPIE, 10932, 1093203 (2019). https://doi.org/10.1117/12.2509429 Wang T., Sohoni M. M., Ma S-Y., Wright L. G., Onodera T., Stein M. M., Anderson M., Richard B. C., McMahon P. L. Applications of digital micromirror devices in photonic neural networks. Proceedings of SPIE, PC12435, PC1243501 (2023). https://doi.org/10.1117/12.2649385 Волков А. А., Миниханов Т. З., Злоказов Е. Ю., Шифрина А. В., Петрова Е. К., Стариков Р. С. Характеристики временно́ й динамики жидкокристаллических пространственно-временных модуляторов как ограничение быстродействия перестраиваемых дифракционных нейросетей. Измерительная техника, 74(1), 83–89 (2025) https://doi.org/10.32446/0368-1025it.2025-1-83-89 ; https://elibrary.ru/asgugk Овчинников А. С., Волков А. А., Керов А. А., Шифрина А. В., Петрова Е. К., Черёмхин П. А. Определение универсального метода квантования компьютерно-синтезированных голограмм при оптической реконструкции изображений. Измерительная техника, 74(2), 70–77 (2025) https://doi.org/10.32446/0368-1025it.2025-2-70-77 ; https://elibrary.ru/fmgmth Иванова С. Д., Шемонаев Д. Д. Реконструкция изображений с использованием голограмм Френеля: соотношение продольного и поперечного масштабов изображений. Измерительная техника, 73(5), 35–40 (2024). https://doi.org/10.32446/0368-1025it.2024-5-35-40 ; https://elibrary.ru/wectmt Akhter N., Min G., Kim J., Lee B. H. A comparative study of reconstruction algorithms in digital holography. Optik, 124, 2955–2958 (2013). https://doi.org/10.1016/j.ijleo.2012.09.002 Otsu N. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 Scholes S., Kara R., Pinnell J., Rodríguez-Fajardo V., Forbes A. Structured light with digital micromirror devices: a guide to best practice. Optical Engineering, 59(4), 041202 (2019). https://doi.org/10.1117/1.OE.59.4.041202.
Supplementary files
