Application of a digital micromirror device in diffractive optical neural networks: space-time characteristics and limitations

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Digital micromirror devices are widely used for optical processing of graphic information, including for the purpose of building holographic display systems and adaptive formation of light beams. Modulators are also used in the creation of diffraction neuron-like systems. The demand for modulators of this type is due to the unique combination of high switching speed and high spatial resolution for optical systems. This paper presents the results of an experimental study of the HDSLM54D67 digital micromirror device (UPO Labs, China), which, according to the manufacturer, has advanced characteristics for its type. The true values of its spatial and velocity parameters are estimated by displaying binary computer-synthesized Fourier holograms and two-dimensional distributions in the form of geometric primitives. The results revealed an abnormal modulation of the left half of the micromirror matrix, leading to a parasitic doubling of the images reconstructed from the holograms. The analysis of the causes of these distortions was carried out, and their connection with the features of the modulator control unit was revealed. The limitations of the applicability of this digital micromirror device model are determined in accordance with the identifi ed spatial limitations (using only the half of the micromirror matrix with a resolution of 1358×1600 pixels) and proposals for optimal integration of the modulator into an optical system are formulated. The use of a modulator is possible, but theoretically the maximum bandwidth will be reduced by 2 times. The results of the study can be used in further optical experiments with this digital micromirror device, including for the task of constructing a diffraction neural network.

About the authors

A. S. Ovchinnikov

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: pik.nik19@mail.ru
ORCID iD: 0009-0001-3678-5722

A. A. Volkov

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: mr.a.a.volkov@gmail.com
ORCID iD: 0009-0008-4213-9373

A. V. Shifrina

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: avshifrina@gmail.com
ORCID iD: 0000-0001-7816-5989

E. K. Petrova

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: EKPetrova@mephi.ru
ORCID iD: 0000-0002-6764-7664

V. A. Nebavskiy

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: nozaler@mail.ru
ORCID iD: 0000-0003-3515-5822

R. S. Starikov

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: rstarikov@mail.ru
ORCID iD: 0000-0002-7369-1565

References

  1. Lecun Y., Bottou L., Bengio Y., Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(5), 2278–2324 (1998). https://doi.org/10.1109/5.726791
  2. Lu Z., Sreekumar G., Goodman E., Banzhaf W., Deb K., Boddeti V. N. Neural architecture transfer. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(9), 2971–2989 (2021). https://doi.org/10.1109/TPAMI.2021.3052758
  3. Ruiz L., Gama F., Ribeiro A. Graph neural networks: architectures, stability and transferability. Proceedings of the IEEE, 109(5), 660–682 (2021). https://doi.org/10.1109/JPROC.2021.3055400
  4. Ahmed S., Dera D., Hassan S., Bouaynaya N., Rasool G. Failure detection in deep neural networks for medical imaging. Frontiers in Medical Technology, 4, 919046 (2022). https://doi.org/10.3389/fmedt.2022.919046
  5. Svistunov A. S., Rymov D. A., Starikov R. S., Cheremkhin P. A. HoloForkNet: digital hologram reconstruction via multibranch neural network. Applied Sciences, 13(10), 6125 (2023). https://doi.org/10.3390/app13106125 ; https://elibrary.ru/hmhhws
  6. Borylo P., Biernacka E., Domzal J., Kądziołka B., Kantor M., Rusek K., Skala M., Wajda K., Wójcik R., Zabek W. Neural networks in selected aspects of communications and networking. IEEE Access, 12, 132856–132890 (2024). https://doi.org/10.1109/ACCESS.2024.3404866
  7. Poyser M., Breckon T. Neural architecture search: a contemporary literature review for computer vision applications. Pattern Recognition, 147, 110052 (2023). https://doi.org/10.1016/j.patcog.2023.110052
  8. Rymov D. A., Svistunov A. S., Starikov R. S., Shifrina A. V., Rodin V. G., Evtikhiev N. N., Cheremkhin P. A. 3D-CGH-Net: customizable 3D-hologram generation via deep learning. Optics and Lasers in Engineering, 184, 108645 (2025). https://doi.org/10.1016/j.optlaseng.2024.108645 ; https://elibrary.ru/judnpo
  9. Collobert R., Weston J. A unifi ed architecture for natural language processing: deep neural networks with multitask learning. Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, July 5–9, pp. 160–167 (2008). https://doi.org/10.1145/1390156.1390177
  10. Galke L., Ram Y., Raviv L. Deep neural networks and humans both benefi t from compositional language structure. Nature Communications, 15, 10816 (2024). https://doi.org/10.1038/s41467-024-55158-1
  11. Dennard R.H., Gaensslen F. H., Yu H.-N., Rideovt V., Bassous E., LeBlanc A. R. Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE Solid-State Circuits Society Newsletter, 12(1), 38–50 (2007). https://doi.org/10.1109/N-SSC.2007.4785543
  12. Zhang D., Tan Z. A review of optical neural networks. Applied Sciences, 12, 5338 (2022). https://doi.org/10.3390/app12115338
  13. Yang D., Lei Z., Li L., Shen W., Li H., Gui C., Song Y. High optical storage density using three-dimensional hybrid nanostructures based on machine learning. Optics and Lasers in Engineering, 161, 107347 (2022). https://doi.org/10.1016/j.optlaseng.2022.107347
  14. Hamerly R., Bernstein L., Sludds A., Soljačić M., Englund D. Large-scale optical neural networks based on photoelectric multiplication. Physical Review X, 9, 021032 (2019). https://doi.org/10.1103/PhysRevX.9.021032
  15. Mengu D., Luo Y., Rivenson Y., Ozcan A. Analysis of diffractive optical neural networks and their integration with electronic neural networks. IEEE Journal of Selected Topics in Quantum Electronics, 26, 1–14 (2020). https://doi.org/10.1109/JSTQE.2019.2921376
  16. Xu R., Lv P., Xu F., Shi Y. A survey of approaches for implementing optical neural networks. Optics & Laser Technology, 136, 106787 (2021). https://doi.org/10.1016/j.optlastec.2020.106787
  17. Song M., Li R., Wang J. Only frequency domain diffractive deep neural networks. Applied Optics, 62, 1082–1087 (2023). https://doi.org/10.1364/AO.480640
  18. Wu K., Liu Y., Gao H., Tao J., Xiong W., Li X. Effi cient design optimization for diffractive deep neural networks. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 44(3), 1199–1203 (2025). https://doi.org/10.1109/TCAD.2024.3432632
  19. Li B., Zhu Y., Fei J., Zheng R., Gu M., Jian L. Multi-functional broadband diffractive neural network with a single spatial light modulator. APL Photonics, 10, 016115 (2025). https://doi.org/10.1063/5.0245832
  20. Zheng M., Liu W., Shi L., Zi J. Diffractive neural networks with improved expressive power for grayscale image classifi cation. Photonics Research, 12, 1159–1166 (2024) https://doi.org/10.1364/PRJ.513845
  21. Миниханов Т. З., Злоказов Е. Ю., Стариков Р. С., Черёмхин П. А. Временна́ я динамика модуляции фазы жидкокристаллического пространственно-временного модулятора света. Измерительная техника, (12), 35–39 (2023) https://doi.org/10.32446/0368-1025it.2023-12-35-39 ; https://elibrary.ru/spyvls
  22. Hu Z., Miscuglio M., Li S., George J., Gupta P., Sorger V. J. Electro-optical hybrid Fourier neural network with amplitudeonly modulation. In Frontiers in Optics / Laser Science, B. Lee, C. Mazzali, K. Corwin, and R. Jason Jones, eds., OSA Technical Digest, FM7D.3. Optica Publishing Group (2020). https://doi.org/10.1364/FIO.2020.FM7D.3
  23. Кирий С. А., Свистунов А. С., Рымов Д. А., Стариков Р. С., Шифрина А. В., Черёмхин П. А. Восстановление изображений объектов: метод реконструкции с использованием цифровых внеосевых голограмм и генеративно-состязательнойнейронной сети. Измерительная техника, 73(4), 23–31 (2024). https://doi.org/10.32446/0368-1025it.2024-4-23-31 ; https://elibrary.ru/potyoh
  24. Turtaev S., Leite I. T., Mitchell K. J., Padgett M. J., Phillips D. B., Čižmár T. Exploiting digital micromirror device for holographic micro-endoscopy. Proceedings of SPIE, 10932, 1093203 (2019). https://doi.org/10.1117/12.2509429
  25. Wang T., Sohoni M. M., Ma S-Y., Wright L. G., Onodera T., Stein M. M., Anderson M., Richard B. C., McMahon P. L. Applications of digital micromirror devices in photonic neural networks. Proceedings of SPIE, PC12435, PC1243501 (2023). https://doi.org/10.1117/12.2649385
  26. Волков А. А., Миниханов Т. З., Злоказов Е. Ю., Шифрина А. В., Петрова Е. К., Стариков Р. С. Характеристики временно́ й динамики жидкокристаллических пространственно-временных модуляторов как ограничение быстродействия перестраиваемых дифракционных нейросетей. Измерительная техника, 74(1), 83–89 (2025) https://doi.org/10.32446/0368-1025it.2025-1-83-89 ; https://elibrary.ru/asgugk
  27. Овчинников А. С., Волков А. А., Керов А. А., Шифрина А. В., Петрова Е. К., Черёмхин П. А. Определение универсального метода квантования компьютерно-синтезированных голограмм при оптической реконструкции изображений. Измерительная техника, 74(2), 70–77 (2025) https://doi.org/10.32446/0368-1025it.2025-2-70-77 ; https://elibrary.ru/fmgmth
  28. Иванова С. Д., Шемонаев Д. Д. Реконструкция изображений с использованием голограмм Френеля: соотношение продольного и поперечного масштабов изображений. Измерительная техника, 73(5), 35–40 (2024). https://doi.org/10.32446/0368-1025it.2024-5-35-40 ; https://elibrary.ru/wectmt
  29. Akhter N., Min G., Kim J., Lee B. H. A comparative study of reconstruction algorithms in digital holography. Optik, 124, 2955–2958 (2013). https://doi.org/10.1016/j.ijleo.2012.09.002
  30. Otsu N. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076
  31. Scholes S., Kara R., Pinnell J., Rodríguez-Fajardo V., Forbes A. Structured light with digital micromirror devices: a guide to best practice. Optical Engineering, 59(4), 041202 (2019). https://doi.org/10.1117/1.OE.59.4.041202.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).