A method for the comprehensive monitoring of gas environments during selective laser melting
- Authors: Pimushkin Y.I.1, Fedotenko E.D.1, Grigoriev S.N.1
-
Affiliations:
- Moscow State University for Technology “STANKIN”
- Issue: Vol 74, No 6 (2025)
- Pages: 23-31
- Section: MEASUREMENTS IN INFORMATION TECHNOLOGIES
- URL: https://ogarev-online.ru/0368-1025/article/view/380350
- ID: 380350
Cite item
Abstract
About the authors
Ya. I. Pimushkin
Moscow State University for Technology “STANKIN”
Email: yaroslav-pimushkin@yandex.ru
ORCID iD: 0009-0009-7359-9871
SPIN-code: 4853-4088
E. D. Fedotenko
Moscow State University for Technology “STANKIN”
Email: kat.fedotenko@yandex.ru
ORCID iD: 0009-0004-6453-069X
SPIN-code: 5311-8682
S. N. Grigoriev
Moscow State University for Technology “STANKIN”
Email: s.grigoriev@stankin.ru
ORCID iD: 0000-0002-8239-5354
SPIN-code: 5287-9316
References
Григорьев С. Н., Смуров И. Ю. Перспективы развития инновационного аддитивного производства в России и за рубежом. Инновации, (10(180)), 76–82 (2013). ht tps://elibrary.ru/stcnvl Williams R., Bilton M., Harrison N., Fox P. The impact of oxidised powder particles on the microstructure and mechanical properties of Ti-6Al-4V processed by laser powder bed fusion. Additive Manufacturing, 46, 102181 (2021). https://doi.org/10.1016/j.addma.2021.102181 Jadhav S., Vleugels J., Kruth J.-P., Humbeeck J., Vanmeensel K. Mechanical and electrical properties of selective laser melted parts produced from surface oxidized copper powder. Material Design & Processing Communications, (2(2)), e94 (2019). https://doi.org/10.1002/mdp2.94 Baroutaji A., Arjunan A., Beal J., Robinson J., Coroado J. The infl uence of atmospheric oxygen content on the mechanical properties of selectively laser melted AlSi10Mg TPMS-based lattice. Materials, (16(1)), 430 (2023). https://doi.org/10.3390/ma16010430 Yang P., Guo X., He D., Tan Z., Shao W., Fu H. Selective laser melting of high relative density and high strength parts made of minor surface oxidation treated pure copper powder. Metals, (11(12)), 1883 (2021). https://doi.org/10.3390/met11121883 Pauzon C., Hryha E., Forêt P., Nyborg L. Effect of argon and nitrogen atmospheres on the properties of stainless steel 316 L parts produced by laser-powder bed fusion. Materials & Design, 179, 107873 (2019). https://doi.org/10.1016/j.matdes.2019.107873 Li R., Liu J., Shi Y., Wang L., Jiang W. Balling behavior of stainless steel and nickel-powder during selective laser melting process. The International Journal of Advanced Manufacturing Technology, 59, 1025–1035 (2012). https://doi.org/10.1007/s00170-011-3566-1 Тарасова Т. В., Гусаров А. В., Протасов К. Е. и др. Исследование структуры и свойств тонких элементов металлических решетчатых конструкций, изготовленных методом селективного лазерного плавления. Упрочняющие технологии и покрытия, (2(230)), 61–70 (2024). https://doi.org/10.36652/1813-1336-2024-20-2-61-70 ; https://elibrary.ru/stkuwi Pivkin P. M., Gusarov A. V., Khmyrov R. et al. Physical and technological aspects of formation of metal matrix composites by laser-powder bed fusion. In: Proc. SPIE: Laser + Photonics for Advanced Manufacturing, Strasbourg, France, 07–12 April 2024, 1300510. SPIE (2024). https://doi.org/10.1117/12.3022539 Wirth F., Frauchiger A., Gutknecht K., Cloots M. Infl uence of the inert gas fl ow on the laser powder bed fusion (LPBF) process. In: Advances in Additive Manufacturing, AIAM 2021. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-54334-1_14.
Supplementary files
