The method of determining of optical transparency of polyimide films of various thicknesses using high-resolution spectrometers
- Authors: Lapshinov B.A.1, Matveev E.V.1, Gaidar A.I.1, Berestov V.V.1
-
Affiliations:
- Research Institute of Advanced Materials and Technology
- Issue: Vol 74, No 5 (2025)
- Pages: 57-62
- Section: TERMOPHYSICAL MEASUREMENTS
- URL: https://ogarev-online.ru/0368-1025/article/view/380315
- ID: 380315
Cite item
Abstract
About the authors
B. A. Lapshinov
Research Institute of Advanced Materials and Technology
Email: lbaniipmt@mail.ru
ORCID iD: 0000-0002-8369-6837
E. V. Matveev
Research Institute of Advanced Materials and Technology
Email: maegor@gmail.com
ORCID iD: 0000-0002-8666-1170
A. I. Gaidar
Research Institute of Advanced Materials and Technology
Email: a_i_g@bk.ru
ORCID iD: 0009-0006-2309-8452
V. V. Berestov
Research Institute of Advanced Materials and Technology
Email: vberestov97@gmail.com
ORCID iD: 0000-0002-5158-1963
References
Лучин ин В. В., Бохов О. С., Афанасьев П. В. и др. Гибкая печатная конформная электроника. Отечественные компетенции и электронные компоненты. Наноиндустрия, 12(6), 342–351 (2019) Nathan A., Ahnood A., Cole M. T. et al. Flexible electronics: the next ubiquitous platform. Proceedings of the IEEE, (100), 1486–1517 (2012). https://doi.org/10.1109/jproc.2012.2190168 Tehrani F., Bavarian B. Facile and scalable disposable sensor based on laser engraved graphene for electrochemical detection of glucose. Scientific Reports, 6(1), 27975 (2016). https://doi.org/10.1038/srep27975 Li L., Han L., Hu H. et al. A review on polymers and their composites for fl exible electronics. Materials Advances, 4(3), 726–746 (2023). https://doi.org/10.1039/d2ma00940d Lin J., Su J., Weng M. et al. Applications of fl exible polyimide: barrier material, sensor material, and functional material. Soft Science, 3(1), 1–53 (2023). https://doi.org/10.20517/ss.2022.24 Athanasiou M., Samartzis N., Sygellou L. et al. High-quality laser-assisted biomass-based turbostratic graphene for high-performance supercapacitors. Carbon, (172), 750–761 (2021). https://doi.org/10.1016/j.carbon.2020.10.042 Devi M., Wang H., Moon S. et al. Laser-carbonization – a powerful tool for micro-fabrication of patterned electronic Carbons. Advanced Materials, 35(38), 2211054 (2023). https://doi.org/10.1002/adma.202211054 Li G. Direct laser writing of graphene electrodes. Journal of Applied Physics, 127(1), 010901 (2020). https://doi.org/10.1063/1.5120056 Huang L., Su J., Song Y. et al. Laser-induced graphene: En route to smart sensing. Nano-micro letters, (12), 1–17. https://doi.org/10.1007/s40820-020-00496-0 Liu X., Zhang F., Zhang Q. et al. Laser-scribed graphene for sensors: preparation, modification, applications, and future prospects. Light: Advanced Manufacturing, 4(2), 143–167 (2023). https://doi.org/10.37188/lam.2023.011 Chatani S., Kloxin C. J., Bowman C. N. The power of light in polymer science: photochemical processes to manipulate polymer formation, structure, and properties. Polymer Chemistry, 5(7), 2187–2201 (2014). https://doi.org/10.1039/c3py01334k
Supplementary files
