Laser-optical system of atomic interferometer based on cold rubidium atoms.

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents the results of the development of a laser-optical system for atomic interferometer based on rubidium atoms cooled to sub-Doppler temperatures. The laser-optical scheme was created to ensure the processes of cooling, pumping, and detecting atoms involved in interferometric measurements of free-fall acceleration. The system utilizes frequency doubled fiber lasers and broadband fiber electro-optical modulators. The choice of fiber lasers is driven by their high efficiency, narrow spectral line, low phase noise levels, as well as ease of operation and reliability. Laser frequency stabilization was carried out using modulation transfer spectroscopy and optical phase-locking methods. Experimental setups were described that allow the generation of multichromatic radiation and minimize spontaneous scattering by detuning from excited levels. It was noted that the design provides a full set of optical frequencies necessary for Raman spectroscopy. The amplitudes of frequency fluctuations of the cooling and pumping lasers were studied. It was shown that the implemented laser-optical system can ensure continuous operation of an atomic interferometer based on clouds of cold rubidium atoms, and an assessment of the fundamental sensitivity limit was conducted.

About the authors

G. V. Osipenko

Russian Metrological Institute of Technical Physics and Radio Engineering

Email: osipenko.9494@mail.ru

M. S. Aleynikov

Russian Metrological Institute of Technical Physics and Radio Engineering

Email: alejnikov@vniiftri.ru

Ju. V. Pashkova

Russian Metrological Institute of Technical Physics and Radio Engineering

Email: pashkova@vniiftri.ru

S. I. Donchenko

Russian Metrological Institute of Technical Physics and Radio Engineering

Email: director@vniiftri.ru
ORCID iD: 0009-0001-9288-3749

References

  1. Fang J. et al. Classical and Atomic Gravimetry. Remote Sensing, 16(14), 2634 (2024). https://doi.org/10.3390/rs16142634
  2. Виноградов В. А., Карпов К. А., Турлапов А. В. Квантовые гравиметры на ультрахолодных атомах. Альманах современной метрологии, (4(24)), 3 64–376 (2020). https://www.elibrary.ru/bhaegr
  3. Алейников М. С., Барышев В. Н., Блинов И. Ю., Купалов Д. С., Осипенко Г. В. Перспективы разработки чувствительного атомного интерферометра на холодных атомах рубидия. Измерительная техника, (7), 9–12 (2020). https://doi.org/10.32446/0368-1025it.2020-7-9-12
  4. Kasevich M., Chu S. Atomic interferometry using stimulated Raman transitions. Physical Review Letters, 67(2), 181–184 (1991). https://doi.org/10.1103/PhysRevLett.67.181
  5. McCarron D. J., King S. A., Cornish S. L. Modulation transfer spectroscopy in atomic rubidium. Measurement Science and Technology, 19(10), 105601 (2008). https://doi.org/10.1088/0957-0233/19/10/105601
  6. Stace T., Luiten A. N., Kovacich R. P. Laser offset-frequency locking using a frequency-to-voltage converter. Measurement Science and Technology, 9(9), 1635 (1998). https://doi.org/10.1088/0957-0233/9/9/038
  7. Осипенко Г. В., Алейников М. С., Суховерская А. Г. Стабилизация частоты лазера с отстройкой от атомного перехода методом спектроскопии с переносом модуляции. Измерительная техника, 73(1), 4–7 (2023). https://doi.org/10.32446/0368-1025it.2023-1-4-7
  8. Steck Daniel A. Rubidium 87 D Line Data, available at: http://steck.us/alkalidata (revision 2.3.3, 28 May 2024).
  9. Louchet-Chauvet A. et al. The influence of transverse motion within an atomic gravimeter. New Journal of Physics, 13(6), 065025 (2011). https://doi.org/10.1088/1367-2630/13/6/065025
  10. Le Gouët J. et al. Limits to the sensitivity of a low noise compact atomic gravimeter. Applied Physics B, 92, 133–144 (2008). https://doi.org/10.1007/s00340-008-3088-1

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).