Study of magnetic and optical properties of Ni@Au nanotubes for local anti-cancer therapy

封面

如何引用文章

全文:

详细

The magnetic and optical properties of gold-coated nickel nanotubes obtained by template synthesis have been studied. A change in the relative intensity of an optical beam passing through a solution of nanotubes in a magnetic field perpendicular and parallel to the beam propagation shows the possibility of orienting nanotubes along the magnetic field. The results provide an assessment of the applicability of such nanotubes in combined photothermal and magnetomechanical anticancer therapy.

作者简介

A. Anikin

Immanuel Kant Baltic Federal University

编辑信件的主要联系方式.
Email: anikinanton93@gmail.com
俄罗斯联邦, Kaliningrad, 236041

E. Shumskaya

Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus

Email: anikinanton93@gmail.com
白俄罗斯, Minsk, 220141

S. Bedin

Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences”

Email: anikinanton93@gmail.com
俄罗斯联邦, Moscow, 119333

I. Doludenko

Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences”

Email: anikinanton93@gmail.com
俄罗斯联邦, Moscow, 119333

D. Khairetdinova

National University of Science and Technology “MISIS”

Email: anikinanton93@gmail.com
俄罗斯联邦, Moscow, 119049

V. Belyaev

Immanuel Kant Baltic Federal University

Email: anikinanton93@gmail.com
俄罗斯联邦, Kaliningrad, 236041

V. Rodionova

Immanuel Kant Baltic Federal University

Email: anikinanton93@gmail.com
俄罗斯联邦, Kaliningrad, 236041

L. Panina

Immanuel Kant Baltic Federal University; National University of Science and Technology “MISIS”

Email: anikinanton93@gmail.com
俄罗斯联邦, Kaliningrad, 236041; Moscow, 119049

参考

  1. Pankhurst Q.A., Connolly J., Jones S.K., Dobson J.P. // J. Phys. D. 2003. V. 36. No. 13. P. R167.
  2. Dutz S., Hergt R. // Nanotechnology. 2014. V. 25. No. 45. P. 452001.
  3. Oliveira H., Perez‐Andres E., Thevenot J. // J. Control. Release. 2013. V. 169. P. 165.
  4. Janssen X.J.A., Schellekens A.J., Van Ommering K. et al. // Biosens. Bioelectron. 2009. V. 24. No. 7. P. 1937.
  5. Maniotis N., Makridis A., Myrovali E. et al. // J. Magn. Magn. Mater. 2019. V. 470. P. 6.
  6. Novosad V., Rozhkova E.A. // Biomed. Engin. Trends Mater. Sci. 2011. P. 425.
  7. Shen Y., Wu C., Uyeda T.Q.P. et al. // Theranostics. 2017. V. 7. No. 6. P. 1735.
  8. Fung A.O., Kapadia V., Pierstorff E. et al. // J. Phys. Chem. C. 2008. V. 112. No. 39. P. 15085.
  9. Martínez-Banderas A.I., Aires A., Teran F.J. et al. // Sci. Reports. 2016. V. 6. No. 1. P. 35786.
  10. Загорский Д.Л., Долуденко И.М., Каневский В.М. и др. // Изв. РАН. Сер. физ. 2021. Т. 85. № 8. С. 10; Zagorskiy D.L., Doludenko I.M., Kanevsky V.M. et al. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 8. P. 1090.
  11. Shumskaya A., Bundyukova V., Kozlovskiy A. et al. // J. Magn. Magn. Mater. 2020. V. 497. P. 165913.
  12. Zagorskiy D., Doludenko I., Zhigalina O. et al. // Membranes. 2022. V. 12. No. 2. P. 195.
  13. Kozlovskiy A.L., Korolkov I.V., Kalkabay G. et al. // J. Nanomaterials. 2017. V. 2017. P. 1.
  14. Shumskaya A., Korolkov I., Rogachev A. et al. // Colloids Surf. A. 2021. V. 626. P. 127077.
  15. Kaniukov E.Yu., Shumskaya E.E., Kutuzau M.D. et al. // Devices Meth. Measurements. 2017. V. 8. No. 3. P. 214.
  16. Espinosa A., Kolosnjaj‐Tabi J., Abou‐Hassan A. et al. // Adv. Funct. Materials. 2018. V. 28. Art. No. 1803660.
  17. Hemmer E., Benayas A., Légaré F., Vetrone F. // Nanoscale Horiz. 2016. V. 1. No. 3. P. 168.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).