Electron-microscopic study of phase transformations in 316L austenitic steel manufactured by laser 3D printing
- Authors: Kazantseva N.V.1,2, Vinogradova N.I.1, Koemets Y.N.1, Ezhov I.V.1, Davidov D.I.1,2
-
Affiliations:
- Institute of Metal Physics of the Ural branch of the Russian Academy of Sciences
- Ural State University of Railway Transport
- Issue: Vol 87, No 10 (2023)
- Pages: 1404-1409
- Section: Articles
- URL: https://ogarev-online.ru/0367-6765/article/view/141834
- DOI: https://doi.org/10.31857/S0367676523702459
- EDN: https://elibrary.ru/ZAFHRO
- ID: 141834
Cite item
Full Text
Abstract
We studied the structure and phases in porous samples of 316L austenitic steel manufactured by laser 3D printing. Transmission electron microscopy revealed the presence of residual δ-ferrite along with austenite in the sample. A high density of dislocations is also observed in the sample. EBSD analysis revealed a lack of texture.
About the authors
N. V. Kazantseva
Institute of Metal Physics of the Ural branch of the Russian Academy of Sciences; Ural State University of Railway Transport
Author for correspondence.
Email: Kazantseva-11@mail.ru
Russia, 620108, Yekaterinburg; Russia, 620034, Ekaterinburg
N. I. Vinogradova
Institute of Metal Physics of the Ural branch of the Russian Academy of Sciences
Email: Kazantseva-11@mail.ru
Russia, 620108, Yekaterinburg
Yu. N. Koemets
Institute of Metal Physics of the Ural branch of the Russian Academy of Sciences
Email: Kazantseva-11@mail.ru
Russia, 620108, Yekaterinburg
I. V. Ezhov
Institute of Metal Physics of the Ural branch of the Russian Academy of Sciences
Email: Kazantseva-11@mail.ru
Russia, 620108, Yekaterinburg
D. I. Davidov
Institute of Metal Physics of the Ural branch of the Russian Academy of Sciences; Ural State University of Railway Transport
Email: Kazantseva-11@mail.ru
Russia, 620108, Yekaterinburg; Russia, 620034, Ekaterinburg
References
- Баранникова С.А., Никонова A.M., Колосов С.В. // Вест. ПНИПУ. Мех. 2021. № 1. С. 22.
- Shrinivas V., Varma S.K., Murr L.E. // Metall. Mater. Trans. A. 1995. V. 26A. P. 661.
- Tucho W.M., Lysne V.H., Austbø H. et al. // J. Alloys Compounds. 2018. V. 740. P. 910.
- Solomon N., Solomon I. // Rev. Metal. 2010. V. 46. No. 2. P. 121.
- Meszaros I., Prohaszka J. // J. Mater. Process. Technol. 2005. V. 161. P. 162.
- Nalepka K., Skocze B., Ciepielowska M. et al. // Materials. 2021. V. 14. P. 127.
- Gradzka-Dahlke M., Waliszewski J. // Defect Diffus. Forum. 2009. V. 283. P. 285.
- Vock S., Klöden B., Kirchner A. et al. // Progr. Add. Manufact. 2019. V. 4. P. 383.
- Bartolomeu F., Buciumeanu M., Pinto E. et al. // Add. Manufact. 2017. V. 16. P. 81.
- Bajaj P., Hariharan A., KiniA. et al. // Mater. Sci. Engin. A. 2020. V. 772. Art. No. 138633.
- Zhongji Sun, Xipeng Tan, Shu Beng Tor, Wai Yee Yeong // Mater. Design. 2016. V. 104. P. 197.
- Krakhmalev P., Fredriksson G., Svensson K. et al. // Metals. 2018. V. 8. Art. No. 643.
- Tucho W.M., Lysne V.H., Austbo H. et al. // J. Alloys Compounds. 2018. V. 740. P. 910.
- Lo K.H. // Mater. Sci. Engin. R. 2009. V. 65. P. 39.
- Saluja R., Moeed K. // Int. J. Engin. Sci. Technol. 2012. V. 4. № 5. P. 2206.
- Fofanov D., Riedner S. // Proc. 2011 SSW Conf. Exhib. (Maastricht, 2011). P. 1.
- Andreaua O., Koutiri I., Patrice Peyre P. et al. // J. Mater. Proc. Tech. 2019. V. 264. P. 21.
Supplementary files
