Frequency dependence of dielectric permittivity of nickel-zinc ferrites
- Authors: Patrakov V.E.1, Rukin SN.1
-
Affiliations:
- Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences
- Issue: Vol 89, No 10 (2025)
- Pages: 1671–1677
- Section: Condensed Matter Physics
- URL: https://ogarev-online.ru/0367-6765/article/view/375839
- DOI: https://doi.org/10.7868/S3034646025100208
- ID: 375839
Cite item
Abstract
We described the methodology and results of measuring the relative dielectric permittivity εr of nickel-zinc ferrite M200VNP and M1000NN in the frequency range of 1–100 kHz. At frequencies below 50 kHz the investigated types of ferrites exhibit interfacial polarization, leading to abnormally high values of εr. At higher frequencies εr decreases to a constant value of approximately 12.
About the authors
V. E. Patrakov
Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences
Email: patrakov@iep.uran.ru
Yekaterinburg, Russia
S N. Rukin
Institute of Electrophysics of the Ural Branch of the Russian Academy of SciencesYekaterinburg, Russia
References
- Romanchenko I.V., Rostov V.V., Gunin A.V., and Konev V.Yu. // J. Appl. Phys. 2015. V. 117. No. 21. Art. No. 214907.
- Ulmaskulov M.R., Shunailov S.A. // J. Appl. Phys. 2021. V. 130. No. 23. Art. No. 234905.
- Ulmaskulov M.R., Sharypov K.A., and Shunailov S.A. // IEEE Trans. Plasma Sci. 2022. V. 50. No. 9. P. 3148.
- Priputnev P.V., Romanchenko I.V., and Rostov V.V. // Tech. Phys. 2023. No. 5. P. 555.
- Ulmaskulov M.R., Shunailov S.A., Sharypov K.A., and Yalandin M.I. // J. Appl. Phys. 2019. V. 126. No. 8. Art. No. 084504.
- Alichkin E.A., Pedos M.S., Ponomarev A.V. et al. // Rev. Sci. Instrum. 2020. V. 91. No. 10. Art. No. 104705.
- Patrakov V.E., Pedos M.S., Ponomarev A.V. et al. // Rev. Sci. Instrum. 2024. V. 95. No. 8. Art. No. 084709.
- Patrakov V.E., Rukin S.N., Shunailov S.A., and Yalandin M.I. // Bull. Russ. Acad. Sci. Phys. 2024. V. 88. Suppl. 4. P. S538.
- Priputnev P.V., Klimov A.I., and Sobyanin R.K. // Russ. Phys. J. 2023. V. 66. No. 8. P. 880.
- Karelin S.Y., Krasovitsky V.B., Magda I.I. et al. // Plasma. 2019. V. 2. No. 2. P. 258.
- Корицкий Ю.В., Пасынков В.В., Тареев Б.М. Справочник по электротехническим материалам. Т. 3. Л.: Энергоатомиздат. Ленинград. отд-ние, 1988.
- https://www.tdk-electronics.tdk.com/download/519704/069c210d0363d7b4682d9ff22c2ba503/ferrites-and-accessories-db-130501.pdf
- French D.M., Hoff B.W. // IEEE Trans. Plasma Sci. 2014. V. 42. No. 10. P. 3387.
- Cui Y., Meng J., Huang L. et al. // Rev. Sci. Instrum. 2021. V. 92. No. 3. Art. No. 034702.
- Смит Я., Вейн Х. Ферриты. М.: Изд. иностр. лит-ры, 1962.
- Fairweather A., Roberts F.F., and Welch A.J.E. // Rep. Prog. Phys. 1952. V. 15. No. 1. P. 142.
- Базуткин В.В., Ларионов В.П., Пинталь Ю.С. Техника высоких напряжений. М.: Энерго-атомиздат, 1986. С. 38.
- Chen L.F., Ong C.K., Neo C.P., Varadan V.V., and Varadan V.K. Microwave electronics: measurement and materials characterization. Chichester: John Wiley & Sons, 2004. 537 p.
- Panofsky W.K.H., Phillips M. Classical electricity and magnetism. Reading: Addison-Wesley Publishing Company, 1962. P. 122.
Supplementary files


