Electron magnetic resonance signals in spinal cord tissues of rats

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Three types of magnetic resonance signals with a g-value above 2.1 were found in rat spinal cord tissues: a wide signal independent on the sample orientation in magnetic field and two types of narrow signals — one-component and two-component with orientation dependence. The temperature behavior of these three types of signals has been studied. It is supposed that the wide signal may be due to ferritin crystal core; and the characteristics of the orientation-dependent signals correspond to the crystalline particles of magnetite.

About the authors

S. V. Yurtaeva

Zavoisky Physical-Technical Institute, Federal Research Center Kazan Scientific Center of the Russian Academy of Sciences

Author for correspondence.
Email: s.yurtaeva@kfti.knc.ru
Kazan, Russia

G. G. Yafarova

Institute of Fundamental Medicine and Biology, Kazan Federal University

Email: s.yurtaeva@kfti.knc.ru
Kazan, Russia

I. V. Yatsyk

Zavoisky Physical-Technical Institute, Federal Research Center Kazan Scientific Center of the Russian Academy of Sciences

Email: s.yurtaeva@kfti.knc.ru
Kazan, Russia

A. A. Rodionov

Institute of Physics, Kazan Federal University

Email: s.yurtaeva@kfti.knc.ru
Kazan, Russia

V. S. Iyudin

Zavoisky Physical-Technical Institute, Federal Research Center Kazan Scientific Center of the Russian Academy of Sciences

Email: s.yurtaeva@kfti.knc.ru
Kazan, Russia

Kh. L. Gainutdinov

Zavoisky Physical-Technical Institute, Federal Research Center Kazan Scientific Center of the Russian Academy of Sciences; Institute of Fundamental Medicine and Biology, Kazan Federal University

Email: s.yurtaeva@kfti.knc.ru
Kazan, Russia; Kazan, Russia

References

  1. Commoner B., Woolum J.C., and Larsson E. // Science. 1969. V. 165 P. 703.
  2. Milvy P., Kakari S., Campbell J.B., and Demopoulos H.B. // Ann. N.Y. Acad. Sci. 1973. V. 222. No. 1. P. 1102.
  3. Brik A.B. // Ukr. J. Phys. Opt. 2010. V. 11. Suppl. 1. P. 46.
  4. Mykhaylyk O.M., Dudchenko N.A. Metal Ions in Biology and Medicine. V. 5. Paris: John Libbey Eurotext, 1998. P. 3.
  5. Mykhaylyk O., Dudchenko N., Cherchenko A. et al. // Med. Princ. Pract. 2005. V. 14. P. 221.
  6. Reinert A., Morawski M., Seeger J. et al. // BMC Neurosci. 2019. V. 20. No. 25. P. 1.
  7. Hallgren B., Sourander P. // J. Neurochem. 1958. V. 3. P. 41.
  8. Mulligan M., Linder M. The size of small molecular weight iron pools in rat tissues. The Biochemistry and Physiology of Iron. N.Y.: Elsevier Biomedical, 1982. P. 313.
  9. Sukhorukova E.G., Grigoriev I.P., Kirik O.V. et al. // J. Evol. Biochem. Physiol. 2013. V. 49. No. 3. P. 370.
  10. Zhang N., Yu X., Xie J., and Xu H. // Mol. Neurobiol. 2021. V. 58. No. 6. P. 2812.
  11. Kirschvink J.L., Kobayashi-Kirschvink A., and Woodford B.J. // Proc. Nat. Acad. Sci. USA. 1992. V. 89. P. 7683.
  12. Schultheiss-Grassi P., Wessiken R., and Dobson J. // Biochim. Biophys. Acta. 1999. V. 1426. P. 212.
  13. Gilder S.A., Wack M., Kaub L. et al. // Sci. Reports. 2018. V. 8. P. 11363.
  14. Liu D., Liu J., Sun D. et al. // Free Radic. Biol. Med. 2003. V. 34. No. 1. P. 64.
  15. Koszyca B., Manavis J., Cornish R.J., and Blumbergs P.C. // J. Clin. Neurosci. 2002. V. 9. No. 3. P. 298.
  16. Blomster L.V., Cowin G.J., Kurniawan N.D., Ruitenberg M.J. // NMR Biomed. 2013. V. 26. No. 2. P. 141.
  17. Deighton N., Abu-Raqabah A., Rowland I.J. et al. // J. Chem. Soc. Faraday Transact. 1991. V. 87. P. 3193.
  18. Quintana C., Cowley J.M., and Marhic C. // J. Struct. Biol. 2004. V. 147. No. 2. P. 166.
  19. Gálvez N., Fernández B., Sánchez P. et al. // J. Amer. Chem. Soc. 2008. V. 130. No. 25. P. 8062.
  20. Khlyustova A.V., Shipko M.N., Sirotkin N.A. et al. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. P. 509.
  21. Tsimmerman A.I., Shanenkov I.I., Sivkov A.A. et al. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 10. P. 1479.
  22. Yurtaeva S.V., Efimov V.N., Yafarova G.G. et al. // Appl. Magn. Reson. 2016. V. 47. No. 6. P. 555.
  23. Li H., Klem M.T., Sebby K.B. et al. // J. Magn. Magn. Mater. 2009. V. 321. P. 175.
  24. Mykhaylyk O., Torök G., Dudchenko O. et al. // J. Magn. Magn. Mater. 2004. V. 272–276. P. 2422.
  25. Hagiwara M., Nagata K., Nagata K. // J. Phys. Soc. Japan. 1998. V. 67. No. 10. P. 3590.
  26. Walz F. // J. Phys. Cond. Matter. 2002. V. 14. Art. No. R285.
  27. Maxworthy A.R., McClelland E. // Geophys. J. Int. 2000. V. 140. P. 101.
  28. Charilaou M., Winklhofer M., and Gehring A.U. // J. Appl. Phys. 2011. V. 109. Art. No. 093903.
  29. Brik A.B. // Mineral J. (Ukraine). 2003. V. 25. P. 6.
  30. Abracado L.G., Esquivel D.M.S., and Wajnberg E. // J. Biol. Phys. 2012. V. 38. P. 607.
  31. Abracado L.G., Esquivel D.M.S., and Wajnberg E. // J. Magn. Magn. Mater. 2008. V. 320. P. e204.
  32. Gehring A.U., Fischer H., Charilaou M., and Garcia-Rubio I. // Geophys. J. Int. 2011. V. 187. P. 1215.
  33. Fischer H., Mastrogiacomo G., Löffler J.F. et al. // Earth Planet. Sci. Lett. 2008. V. 270. P. 200.
  34. Faivre D., Fischer A., Garcia-Rubio I., Mastrogiacomo G., Gehring A.U. // Biophys. J. 2010. V. 99. No. 4. P. 1268.
  35. Kirschvink J.L. // Bioelectromagn. 1989. V. 10. No. 3. P. 239.
  36. Fdez-Gubieda M.L., Muela A., Alonso J. et al. // ASC Nano. 2013. V. 7. No. 4. P. 3297.
  37. Ward R.J., Zucca F.A., Duyn J.H. et al. // Lancet Neurol. 2014. V. 13. No. 10. P. 1045.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).