Magnetic resonance signals arising during intensive division of Fagopyrum tataricum callus cells and their orientation behavior

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The orientation behavior of electron magnetic resonance signals arising during the growth and division of buckwheat callus cells Fagopyrum tataricum (L.) Gaertn was studied. Three types of signals were detected two of them demonstrated angular dependencies. Angular dependencies were investigated for two types of signals. Magnetic anisotropy characteristics were obtained. They indicate a change in the geometry of the magnetic area in cell nuclei during their division.

About the authors

S. V. Yurtaeva

Zavoisky Physical-Technical Institute, Federal Research Center Kazan Scientific Center of the Russian Academy of Sciences

Email: s.yurtaeva@kfii.kne.ru
Kazan, Russia

I. V. Yatsyk

Zavoisky Physical-Technical Institute, Federal Research Center Kazan Scientific Center of the Russian Academy of Sciences

Kazan, Russia

A. R. Fakhrutdinov

Zavoisky Physical-Technical Institute, Federal Research Center Kazan Scientific Center of the Russian Academy of Sciences

Kazan, Russia

A. I. Valieva

Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of the Russian Academy of Sciences

Kazan, Russia

A. N. Akulov

Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of the Russian Academy of Sciences

Kazan, Russia

N. I. Rumyantseva

Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of the Russian Academy of Sciences

Kazan, Russia

References

  1. Самойлова О.П., Блюменфельд Л.А. // Биофизика. 1961. Т. 6. № 1. С. 15.
  2. Цапин А.И., Самойлова О.П., Блюменфельд Л.А. // Биофизика. 1989. Т. 34. № 4. С. 630.
  3. Самойлова О.П., Цапин А.И., Блюменфельд Л.А. // Биофизика. 1995. Т. 40. № 2. С. 383.
  4. Блюменфельд Л.А. // ДАН СССР. 1963. Т. 148. № 2. С. 361; Blumenfeld L.A. // Sov. Phys. Doklady. 1963. V. 148. No. 2. P. 361.
  5. Robbins E., Peterson S.T. // Proc. Nat. Acad. Sci. USA. 1970. No. 66. P. 1244.
  6. Robinson I., Yang Y., Zhang F. et al. // J. Synchrotron Radiat. 2016. V. 23 (Pt 6). P. 1490.
  7. Bertoncini C.R.A., Meneghini R., Galembeck F. et al. // J. Cancer Sci. Ther. 2016. V. 8. No. 8. P. 213.
  8. Kamalova G.V., Akulov A.N., Rumyantseva N.I. // Biochemistry. (Moscow). 2009. V. 74. No. 6. P. 686.
  9. Betekhtin A., Rojek M., Jaskowiak J. et al. // PLoS ONE. 2017. V. 12. No. 3. Art. No. e0173537.
  10. Бутенко Л.И., Лигай Л.В. // Фунд. исследования. 2013. № 4–5. С. 1128.
  11. Rani R.L., Kulkarni U.N., and Birddar S. // J. Pharm Innov. 2022. V. 11. No. 10. P. 1895.
  12. Bonafaccia G., Gambelli L., Fabjan N., and Kreft I. // Food Chem. 2003. V. 83. P. 1.
  13. Labanowska M., Kurdziel M., Filek M., and Weselucha-Birczynska A. // J. Plant Physiol. 2016. V. 199. P. 52.
  14. Shulman R.G., Walsh W.M., Williams H.J., and Wright Y.P. // Biochem. Biophys. Res. Commun. 1961. V. 5. No. 1. P. 52.
  15. Hagiwara M., Nagata K. // J. Phys. Soc. Japan. 1998. V. 67. No. 10. P. 3590.
  16. Yurtaeva S.V., Efimov V.N., Yajarova G.G. et al. // Appl. Magn. Reson. 2016. V. 47. No. 6. P. 555.
  17. Kirschvink J.L., Jones D.S., and MacFadden B.J. // Magnetic Biomineralization and Magnetoreception in Organisms. V. 1. New York: Plenum press, 1985. 704 p.
  18. Svobodova H., Kosnáč D., Tanila H. et al. // Biometals. 2020. V. 33. P. 1.
  19. Khlyustova A.V., Shipko M.N., Sirotkin N.A. et al. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. P. 509.
  20. Tsimmerman A.I., Shanenkov I.I., Sivkov A.A. et al. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 10. P. 1224.
  21. Schneider M.G.M., Martin M.J., Otarola J. et al. // Pharmaceuticals. 2022. V. 14. P. 204.
  22. Тushpenzeva A.V., Gorbenko A.S., Yaroslavtsev R.N. et al. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 9. P. 965.
  23. Chernichko D.I., Khomutov G.B. // Inorg. Mater. 2009. V. 45. P. 1283.
  24. Yuilkov M.M., Martyanov O.N., and Yadanov V.F. // Appl. Magn. Reson. 2002. V. 23. P. 105.
  25. Martyanov O.N., Trukhan S.N., and Yadanov V.F. // Appl. Magn. Reson. 2008. V. 33. P. 57.
  26. Petukhov V.Yu., Panarina N.Yu., Khabibullina N.R. et al. // Appl. Magn. Reson. 2006. V. 30. P. 233.
  27. Li H., Klem M.T., Sebby K.B. et al. // J. Magn. Magn. Mater. 2009. V. 321. P. 175.
  28. Biasi R.S., Tessaleno T.C. // J. Appl. Phys. 1978. V. 49. No. 4. P. 2466.
  29. Raikher Yu.L., Stepanov V.I. // Sov. Phys. JETP. 1992. V. 75. No. 4. P. 764.
  30. Kachkachi H., Schmool D.S. // Eur. Phys. J. B 2007. V. 56. P. 27.
  31. Commoner B., Woolum J.C., and Larsson E. // Science. 1969. V. 165. P. 703.
  32. Brik A.B. // Mineral Journal (Ukraine). 2003. V. 25. P. 6.
  33. Abracado L.G., Esquivel D.M.S., and Wajnberg E. // J. Magn. Magn. Mater. 2008. V. 320. Art. No. e204.
  34. Yamasaki Y., Yoshikawa K. // J. Amer. Chem. Soc. 1997. V. 119. No. 44. P. 10573.
  35. Luo Z., Wang Y., Li S., and Yang G. // Polymers. 2018. V. 10. 394. P. 1.
  36. Ramos-Alonso L., Holland P., Le Gras S. et al. // Proc. Nat. Acad. Sci. USA. 2023. V. 120. No. 4. Art. No. e2210593120.
  37. Roschztarritz H., Grillet L., Isaure M.-P. et al. // J. Biol. Chem. 2011. V. 286. No. 32. P. 27863.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).