Multi-gigawatt sub-THz free-electron maser of planar geometry with three-dimensional distributed feedback: design parameters and simulations

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The simulations of spatially extended free-electron masers (FEM) of planar geometry based on the use of a three-dimensional distributed feedback mechanism, which is implemented in the so-called “three-dimensional” Bragg structures, is carried out. The possibility of creating an FEM of this type in the W-band based on high-current explosive emission accelerator “U-2” (BINP RAS) forming a sheet electron beam of 1 MeV / 140 kA / 10 μs with a cross section of 1 cm × 140 cm is studied. The possibility of implementing a stable narrow-band generation regime in the FEM under development at optimal parameters with an electron efficiency of ∼ 18–20% and a record output power of up to ∼ 20 GW level is demonstrated.

About the authors

N. Yu Peskov

Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences; Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences

Email: peskov@ipfran.ru
Nizhny Novgorod, Russia; Novosibirsk, Russia

E. D Egorova

Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences; Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences

Nizhny Novgorod, Russia; Novosibirsk, Russia

N. S Ginzburg

Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Nizhny Novgorod, Russia

A. S Sergeev

Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Nizhny Novgorod, Russia

A. V Arzhannikov

Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences

Novosibirsk, Russia

S. L Sinitsky

Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences

Novosibirsk, Russia

References

  1. Thumm M. // In: Generation and application of highpower microwaves Boca Raton: CRC Press, 2020. P. 310.
  2. Benford J. // IEEE Trans. Plasma Sci. 2008. V. 36. No. 3. P. 569.
  3. Booske J.H. // Phys. Plasmas. 2008. V. 15. No. 5. Art. No. 055502.
  4. Litvak A.G., Denisov G.G., and Glyavin M.Yu. // IEEE J. Microwave. 2021.V. 1. No. 1. P. 260.
  5. Thumm M.K.A., Denisov G.G., Sakamoto K., and Tran M.Q. // Nuclear Fusion. 2019. V. 59. No. 7. Art. No. 073001.
  6. Nusinovich G.S., Thumm M.K.A., and Petelin M.I. // J. Infrared. Millim. THz Waves. 2014. V. 35. P. 325.
  7. Гинзбург Н.С., Песков Н.Ю., Сергеев А.С. и др. // Изв. вузов. Прикл. нелин. динам. 2020. Т. 28.№6. С. 575.
  8. Аржанников А.В., Гинзбург Н.С., Заславский В.Ю. и др. // Письма в ЖТФ. 2013. Т. 39. № 18. С. 8
  9. Arzhannikov A.V., Ginzburg N.S., Zaslavsky V.Yu. et al. // Tech. Phys. Lett. 2013. V. 39. No. 9. P. 801.
  10. Аржанников А.В., Синицкий С.Л. Килоамперные электронные пучки для накачки колебаний в вакууме и плазме. Новосибирск: ИПЦ НГУ, 2016. 258 с.
  11. Peskov N.Yu., Egorova E.D., Sergeev A.S., and Tsarkov I.M. // Phys. Rev. Appl. 2024. V. 21. No. 1. Art. No. L011003.
  12. Peskov N.Yu., Ginzburg N.S., Golubev I.I. et al. // Appl. Phys. Lett. 2020. V. 116. Art. No. 0006047.
  13. Ковaлев Н.Ф., Оpловa И.М., Петелин М.И. // Изв. вузов. Paдиофиз. 1968. Т. 11. № 5. С. 783
  14. Kovalev N.F., Orlova I.M., and Petelin M.I. // Radiophys. Quant. Electron. 1968. V. 11. P. 449.
  15. Yariv A. Quantum Electronics. N.Y.: John Wiley and Sons Inc., 1975. 602 р.
  16. Песков Н.Ю., Егорова Е.Д., Гинзбург Н.С. и др. // Изв. вузов. Paдиофиз. 2023. Т. 66. № 7-8. С. 575
  17. Peskov N.Yu., Egorova E.D., Ginzburg N.S. et al. // Radiophys. Quant. Electron. 2023. V. 66. No. 7–8. P. 521.
  18. Benford J., Swegle J.A., Schamiloglu E. High Power Microwaves. Boca Raton: CRC Press, 2015. 552 р.
  19. Песков Н.Ю., Аржанников А.В., Белоусов В.И. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 5. С. 755
  20. Peskov N.Yu., Arzhannikov A.V., Belousov V.I. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 5. P. 669.
  21. Сандалов Е.С., Синицкий С.Л., Аржанников А.В. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 5. С. 652
  22. Sandalov E.S., Sinitsky S.L., Arzhannikov A.V. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 5. P. 573.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).